Ohio DOT 448 Density

2008 Ohio Asphalt Paving Conference
Ohio DOT 448 Density

PRESENTATION GOALS

- Why the specification changed?
- What was the development process?
- What are the changes to and how does the specification work?
- What results has ODOT had?
- Recommendations and Conclusions
Why create the change

- 2006 Strategic Initiative for Pavements
- A streamlined method for ensuring proper contractor control of the paving operations and adequate mat density is achieved.
- A better method to assure the mat’s density than
 - the number of rollers
 - Loading of rollers
 - capacity of rollers
448 Density - Development

ODOT/Asphalt Industry Committee

Wanted User Friendly methods for ODOT and Contractor Personnel

Uniform thickness of Courses

Minimum thickness of surface and Intermediate Courses - 1 inch or greater

Projects Over 1 Lane Mile

Use nuclear or non-nuclear gauges

Minimum Level of acceptance/assurance
Ohio DOT 448 Density

STATE OF OHIO
DEPARTMENT OF TRANSPORTATION
SUPPLEMENT 1055
ASPHALT MAT DENSITY BY GAUGE TESTING
Ohio DOT 448 Density

Calibration

Nuclear and Non Nuclear

Testing Operations

Nuclear density gauge operation & calibration
Electronic density gauge operation & calibration

Reporting and Calibration Forms

TE – Min Density Target Nuclear
TE – Min Density Target Elec Gauge
TE – Mat Density QCQA
Ohio DOT 448 Density

Step One Gage Calibration

Nuclear

Electro-magnetic
Ohio DOT 448 Density

Step Two: At job start obtain gauge readings and actual core results at same reading location.

<table>
<thead>
<tr>
<th>Location</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCF</td>
<td></td>
<td></td>
<td></td>
<td>a</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Location</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Density</td>
<td></td>
<td></td>
<td></td>
<td>b</td>
</tr>
</tbody>
</table>

Core Density Test Results (see TE-199 for detail)
Ohio DOT 448 Density

Step Three: Calculate a QC minimum density target (in PCF) using gauge and core results.

Apply the following to obtain the nuclear gauge Minimum Density Target:

Minimum Density Target (PCF) = 93 X Gauge Reading Average (a) / Average % Density of cores (b).

Minimum Density Target = 93 X (a) / (b) \text{ EQUALS } (c) \text{ PCF}

EXAMPLE - Gage Avg is 145 – Core avg % 92

Min Density for Gage = 93 (145/92) = 146.8 PCF
Step Four: For QC measure the actual mat with the gauge in PCF and record. Calculate % density and record.

DAILY MAT DENSITY QCQA REPORT

<table>
<thead>
<tr>
<th>#</th>
<th>Longitudinal Location</th>
<th>Transverse Location (circle)</th>
<th>Actual Gauge Reading (d), pcf</th>
<th>% Density = (\frac{d}{c} \times 93)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L C R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L C R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L C R</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>L C R</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ohio DOT 448 Density

Step Five: Take ODOT QA test readings at 2 locations per day chosen by the inspector. Calculate % density and record.

DAILY MAT DENSITY QCQA REPORT

<table>
<thead>
<tr>
<th>ODOT QA TESTS</th>
<th>PCFs</th>
<th>L</th>
<th>C</th>
<th>R</th>
<th>AVE</th>
<th>% Density*</th>
<th>ODOT INITIALS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>148/</td>
<td>147/</td>
<td>146/</td>
<td>147</td>
<td></td>
<td>93.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Ave Gauge PCF / Minimum Density Target PCF X 93 = % Density

Tests performed by: ____________________________ Date Submitted: ____________________________
Ohio DOT 448 Density

2007 448 Specification Results

No. of projects placed: 52

Typical project size: 2-6 production days

Mix Types: 16 Superpave, 36 Type I Medium

Thicknesses: 0.75 to 1.75 in.
Ohio DOT 448 Density

2007 448 Specification Results

Density results:

- 92% of projects achieved minimum density with no deduction
- 8% of projects received some type of deduction even if part of one day.
- 9 of 12 districts reported no deductions.
- 73% of projects achieved a density of 94% (above the minimum target of 93%) in general.
- Densities ranged as high as 96 to 97% on about 38% of the projects.
Ohio DOT 448 Density

Average 448 QA density readings
Ohio DOT 448 Density
Recommendations and conclusions

- Applying to lift thicknesses less than 1 inch can create compaction result issues
- Use on projects with uniform thickness courses
- Initial learning curve for all involved (forms, spec, understanding, test equipment on site)
- ODOT expects deductions numbers to decrease with continued use
- Will continue to watch 1 inch lifts for consistency in density
Ohio DOT 448 Density
Recommendations and conclusions

• While 8% of projects did have deductions only two projects had more than **one** ½ day’s production with a deduction

• Both gauge types proved applicable and reliable

• Using Gage without calibrated against actual core samples has little meaning. Using those results have little meaning.

• The new forms proved user friendly and usable with minimal coaching
Ohio DOT 448 Density

Recommendations and conclusions

- Owners should initially review forms to help inspectors understand how to completely fill out the forms.

- Development of and the rapid Implementation (no real test projects) was very successful and shows what an owner – contractor can successfully produce.

- The specification has done what it was targeted for achieving more consistent density and thus a more consistent level of durability across the state for 448 mixes.
Thank You!

Lloyd Welker, P.E.
Administrator
Office of Materials Management
614-275-1302