Planning for a Smooth Ride

Eric G. Heckert, PE
District Testing Engineer
ODOT District 2

ODOT 322 (09)
Wood County Route 199
SLM 6.80 – 14.82
History

- Route last paved in 1987
 - Project 292 (87)
 - 404 mixture

- 2008 PCR 63
 - High Frequent (HF) Edge Cracking
 - Medium Occasional (MO) Rutting
 - High Occasional (HO) Longitudinal Cracking
2005 FPO Master Craftsman
What to Do?

• Mill & Fill
 • Additional cost to mill
 • Concerns of thin shoulders

• Overlay
 • Pavement decent
 • Some rutting
 • Curves were a concern
Shoulder Concerns
Centerline Concerns
Overlay

- Full Depth Repair
 - Get worst areas, primarily on shoulder
- Partial Depth Repair
 - Concerns on curves

- Additional Structure
 - Need a pre-leveling course
 - Didn’t want too much additional thickness
Final Decision

- Pavement Repair
 - Full Depth
 - Use 301 to address shoulders
 - Partial Depth
 - Used Type-II at 3” to address the curves
- Two courses
 - 1” 9.5mm Leveling Course
 - 1” 424B (Smoothseal) surface course
We’re Ready to Go…Right?

- Notices some ruts
 - Are they real?
- How to address?
 - Call the people with the cool toys
 - Office of Innovation, Partnerships, & Energy
 - Formerly part of the Office of Pavement Engineering
 - Brian Schleppi & Dan Radanovich
 - Helped on previous projects
 - Intersection repairs
Rutting Concerns
What about the Rutting?

• What could they do?
 • Provide road profile / IRI data
 • Look for isolated poor ride locations

• Use Transverse Profiler
 • Help provide rut information
A Transverse What?

- Does line scans across the pavement
 - A line scan laser

- Uses 2 sensors on each side of van
 - Scans 640 points in just over 7’
Multi-Purpose Van
7 Foot 7 Foot 1 FT Overlap
High Speed Opticator
Line Scan Laser

7 Foot 1 FT Overlap 7 Foot
Rut Data

- Each lane was run
 - Looked at data
 - Rut depth (each wheel path)
 - Rut width (each wheel path)
 - Cross-sectional area of rut
Rut Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>0.09</td>
<td>0.14</td>
<td>0.18</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>0.08</td>
<td>0.12</td>
<td>0.16</td>
</tr>
<tr>
<td>20</td>
<td>30</td>
<td>0.10</td>
<td>0.16</td>
<td>0.22</td>
</tr>
<tr>
<td>30</td>
<td>40</td>
<td>0.14</td>
<td>0.14</td>
<td>0.13</td>
</tr>
<tr>
<td>40</td>
<td>50</td>
<td>0.15</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>50</td>
<td>60</td>
<td>0.12</td>
<td>0.15</td>
<td>0.17</td>
</tr>
</tbody>
</table>
Rut Data

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>46.72</td>
<td>45.32</td>
<td>43.92</td>
<td>2.8</td>
<td>7.9</td>
<td>5.1</td>
</tr>
<tr>
<td>50.12</td>
<td>46.10</td>
<td>42.09</td>
<td>2.7</td>
<td>6.9</td>
<td>4.2</td>
</tr>
<tr>
<td>39.04</td>
<td>41.74</td>
<td>44.43</td>
<td>2.9</td>
<td>9.7</td>
<td>6.8</td>
</tr>
<tr>
<td>56.04</td>
<td>47.07</td>
<td>38.10</td>
<td>4.6</td>
<td>7.5</td>
<td>2.9</td>
</tr>
<tr>
<td>46.47</td>
<td>43.79</td>
<td>41.12</td>
<td>4.6</td>
<td>8.3</td>
<td>3.7</td>
</tr>
<tr>
<td>46.78</td>
<td>45.18</td>
<td>43.57</td>
<td>3.5</td>
<td>8.1</td>
<td>4.6</td>
</tr>
</tbody>
</table>
Data SAYS

- Average Rut: .34 in
- Average Area: 21.1 in²

- Average Rut: .42 in
- Average Area: 29.1 in²
Are We Sure?

- Several locations showed RWP ruts of greater than ½”
 - Address with full-depth shoulder repairs
 - This was throughout the project.
- Several isolated locations showed average LWP and RPW ruts around ½”
 - Address these location with partial depth repairs
Additional Quantity

- We want a 1” leveling course
 - Now must account for irregularities

- We ended up providing an additional 500cy
 - Gets the 1” leveling course, instead of \(\frac{7}{8} \)”
Contractor Question

- Do you want 1” of material?
- Or, try to maintain quantity?

Answer: Both. Material is accounted for
 - We hope
Project Proceeds

- Pavement repairs
- Leveling course
- Surface
Remember the Simple Things

- ODOT and the contractor worked together
 - “Partnering”
 - Open communication on the project

- Both parties wanted a nice job
 - We paved after November 1st
 - Contractor utilized manpower and equipment
 - Crew took pride in their work
Soooo....Did Our Plan Work?

- For the primary function...yes
 - We had good quantity for the intermediate course
 - 4392 tons planned
 - 4618 tons used
 - Some was used elsewhere

- Concerns were addressed
Bonus: A Smooth Pavement

- Not too smooth at first
 - Original Info
 - Up direction = IRI of 110
 - 41 tenths that exceeded and IRI of 100
 - Down direction = Average IRI of 100
 - 37 tenths that exceeded an IRI of 100
 - Remember…this is 21 year old pavement
How Smooth?

- Gradually getting better
 - After the intermediate
 - NB average IRI of 56
 - SB average IRI of 51
Smooth as Babies Skin
Now...How Smooth?

- Project data
 - Up Direction
 - Contractor Data average IRI of 31.2
 - Range 22.4 - 53.6
 - Down Direction
 - Contractor Data average IRI of 32.3
 - Range 24.7 – 50.2
Very Smooth Indeed

- Smoothest Project in D2
- Only six sections did not receive maximum incentive (105%)
 - Over 96% of project had maximum incentive
 - All sections had incentive (IRI < 60)
- Over $41,000 paid in incentive
 - Proposal Note 470
Summary

• Transverse Profiler can provide rut information

• Use the data to provide adequate materials to the paving crews
 • And provide adequate repair quantities

• Project and end-users will benefit
Lessons Learned

• Trust the data (to a certain degree)
 • It provides an idea for pavement repair
 • Look at this more closely in the future
• We were very close in quantity
• It helps the final product
 • Gives the paving crew adequate material
 • Improved smoothness
• Caution: See the existing roadway before deciding
OOPS!

- You can never have enough repair set up
- Ended up adding repair quantities
 - Could have used more full depth repair on the shoulders
 - Used some partial depth repair on shoulders
 - Sacrificed some mainline partial depth repair
We Hope To Do It Again

- It will help on overlays
 - A few planned in 2011 (Smoothseal)
- Trust the data
 - Provide quantity that the data shows
- Fine tune our process
 - It worked on one job
 - Use future projects to fine-tune our process
 - Improve accuracy
"The bitterness of poor quality remains long after the sweetness of meeting the schedule has been forgotten"
Questions?