Importance of Controlling Segregation in All Asphalt Layers

John E. Haddock, PhD, PE
Professor of Civil Engineering
Director, Indiana Local Technical Assistance Program
Purdue University

Ohio Asphalt Paving Conference
Columbus, OH
3 Feb 2016
Asphalt Mixture Segregation

- What is it?
- What does it look like?
- How is it quantified?
- How does it affect pavement performance?
Segregation Defined

- I cannot define it, but I know it when I see it!
Segregation Defined

- “Separation of the coarse aggregate particles in the mix from the rest of the mass.”
 —Jim Scherocman, Asphalt Magazine

- “When segregation is present in a mixture, there is a concentration of coarse materials in some areas of the paved mat, while other areas contain a concentration of finer materials.”
 —Segregation, Causes and Cures, AASHTO
Segregation Defined

“Segregation is a lack of homogeneity in the hot mix asphalt constituents of the in-place mat of such a magnitude that there is a reasonable expectation of accelerated pavement distress(es).”
—NCHRP Report 441: Segregation in Hot Mix Asphalt Pavements
Segregation
Segregation Quantified

- Good luck!
- Visual “measurement”
- Change in gradation and asphalt binder content
- Mechanical measurements
 - Segregation can affect pavement performance
Pavement Design Assumptions

- Homogeneous material properties
- Isotropic layers
- Materials characterized by modulus value
Fatigue Cracking

Asphalt Mixture

Base Course

Subgrade

Tension

Compression
Rutting

HMA

Base Course

Subgrade
Segregation and Performance
Mixture Property Reduction

<table>
<thead>
<tr>
<th>Mixture Property</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Permeability</td>
<td>Increases with level of coarse segregation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dynamic modulus</td>
<td>10-20%</td>
<td>20-30%</td>
<td>30-50%</td>
</tr>
<tr>
<td>Loss of fatigue life</td>
<td>38%</td>
<td>80%</td>
<td>99%</td>
</tr>
<tr>
<td>Rutting</td>
<td>No strong influence</td>
<td>Mixed results</td>
<td></td>
</tr>
</tbody>
</table>

Source: NCHRP Report 441
Using decreased mixture properties, the Pavement ME Design program was used to predict distresses
- 20-year design life
- Just over 11 million heavy trucks
- Columbus, Ohio weather
- Three pavement layers, 1.5 inches surface mixture, 2.5 inches intermediate mixture, 3.0 inches base mixture, over 10 inches of prepared A-6 subgrade
Segregation and Performance

- Five different scenarios
 - No segregation in any layers
 - Only surface layer segregation
 - Only intermediate layer segregation
 - Only base layer segregation
 - All three asphalt layers segregated
- Segregation represented by 40% modulus reduction, reduction in binder content, and increase in air voids
Pavement ME Design

- Total rutting, inches
- Asphalt mixture rutting, inches
- Bottom-up fatigue cracking, % lane area
- Top-down fatigue cracking, feet/mile
- Asphalt thermal cracking, feet/mile
- Terminal IRI, inches/mile
Predicted Rutting

- None: 0.73 inches
- Surface: 0.75 inches
- Intermediate: 0.83 inches
- Base: 0.77 inches
- All Layers: 0.89 inches

Total Rutting, inches
Predicted Fatigue Cracking

<table>
<thead>
<tr>
<th>Fatigue Cracking, %</th>
<th>None</th>
<th>Surface</th>
<th>Intermediate</th>
<th>Base</th>
<th>All Layers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21.7</td>
<td>23.2</td>
<td>22.9</td>
<td>69.8</td>
<td>82.1</td>
</tr>
</tbody>
</table>
Predicted IRI

IRI, inches/mile

- None: 166
- Surface: 185
- Intermediate: 171
- Base: 193
- All Layers: 219
Predicted Pavement Distress

<table>
<thead>
<tr>
<th>Segregation Case</th>
<th>Rutting Increase, %</th>
<th>Fatigue Cracking Increase, %</th>
<th>IRI Increase, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface</td>
<td>2.7</td>
<td>6.9</td>
<td>11.5</td>
</tr>
<tr>
<td>Intermediate</td>
<td>13.7</td>
<td>5.3</td>
<td>3.1</td>
</tr>
<tr>
<td>Base</td>
<td>5.5</td>
<td>221.3</td>
<td>16.5</td>
</tr>
<tr>
<td>All layers</td>
<td>21.9</td>
<td>277.9</td>
<td>32.2</td>
</tr>
</tbody>
</table>
Predicted Pavement Life

- Rutting Life
- IRI Life
- Fatigue Cracking Life

Categories: None, Surface, Intermediate, Base, All Layers
Summary

- Uniformity in all layers is important
- Lack of density and permeability can greatly affect asphalt mixture performance
- Lack of uniformity in any layer can increase likelihood of distresses and decrease pavement life
Thank You!