WARM ASPHALT
PLANT #91
COLUMBUS OHIO

FLEXIBLE PAVEMENTS
ANNUAL MEETING
MARCH 29, 2006

Larry Shively
The Shelly Company
WHAT IS WARM ASPHALT?

- PROCESS BY HMA:
 CAN BE PRODUCED AND PLACED AT LOWER TEMPERATURES

- SOME ROAD FOREMEN SAY THE INDUSTRY HAS BEEN PRODUCING THIS TYPE OF MIX FOR YEARS!!
Why Warm Asphalt?

- Reduce production and laydown temperatures
- Reduce emissions
- Reduce energy costs
- Reduce aging of binder
- Other Possible Benefits:
 - Cool weather paving (extend season)
 - Compaction aid for stiff mixes
Why Warm Asphalt?

Research by Stroup-Gardiner and Lange at AU Indicates increased emissions with increased temp.
Comparison of Visible Emissions

Hot Mix (155 °C) vs. WAM (110 °C)

311 °F vs. 230 °F
What are Warm Asphalt Mixes?

Several processes have been developed to improve mixture workability allowing lower production and laydown temperatures:

- WAM Foam – Shell/Kolo Veidekke
- **Zeolite** – Eurovia/Hubbard Construction
- Sasobit – Sasol Int./Moore and Munger
- New processes
 - MeadWetvaco
Zeolite

- Zeolites are crystalline hydrated aluminum silicates
- Aspha-min®, is a special Zeolite added to the hot mix asphalt in the temperature range of 100 to 200 °C (212 to 392 °F)
- When the Zeolite is heated; it gives up it’s internal moisture, approximately 21% by weight, microscopically foaming the asphalt
Above 100°C the water is slowly released providing a workable mix at a lower temperature.
Granulated aspha-min®
Addition of aspha-min®

• Aspha-min is added at an addition rate of 0.3% by weight of mix
• 6 pounds of Aspha-min per ton
Creates a controlled microscopic foaming effect

Creates an increased volume of the binder in the mix

Creates micro pores in the mix making a higher workability of the mix along with obtaining a higher compactability

Previously only possible at higher temperatures
Type of Mineral Filler Bin used
Calibrating the Feeder

The outlet is removed
A container is placed under the hopper and the unit started
Bags of Aspha-min
HAD SOME PROBLEMS WITH FEED SYSTEM
Drum mix plant

Aspha-min blown into drum close to binder delivery point.
TRANSPARENT HOSE TO MONITOR FLOW
MAIN ENTRANCE TO
PLANT SITE
MAIN ENTRANCE TO PLANT SITE
PAVEMENT DESIGN

Not drawn to scale

TYPE 1 PG 70-22

TYPE 2 PG 70-22

TYPE 2 PG 70-22
Mixes were designed using Marshall Mix Design Procedures per ODOT specifications
75 blows
Production Temperatures

- EACH OF THE TWO MIXES WERE PRODUCED AT:
 - 300 °F
 - 240-255 °F
 - 230-235 °F
Mix Design Issues

• What temperature should specimens be compacted?
• TSR
• Volumetrics at plant
• Superpave vs. Marshall
Type 2 Zeolite Mix % Air Voids

% Ac

Original Design
Zeolite 255
Zeolite 235
WHAT BINDER CONTENT SHOULD WE USE?

- DECIDED TO USE THE ORIGINAL DESIGN BINDER CONTENT
- WILL COMPACT SPECIMENS AT THE DESIGN TEMPERATURE NOT THE PLACEMENT TEMPERATURES
Type 1 Zeolite Mix % Air Voids

% Air Voids

% AC

Original Design
Zeolite 255F
Zeolite 235F
SAME ISSUE WITH TYPE 1

- DECIDED TO STAY WITH ORIGINAL DESIGN TEMPERATURES
- WILL USE ORIGINAL MARSHALL MIX DESIGN
APA RUT TESTING
T-2 WARM ASPHALT STUDY LOADED WHEEL TEST COMPARISON

DEF. IN INCHES

OF CYCLES

Original Design
255F
235F
T-1 WARM ASPHALT STUDY LOADED WHEEL TEST COMPARISON

DEF. IN INCHES

OF CYCLES

Original Design
266F
246F
TSR

• EXAMINED THE TSR VALUES IN THE LABORATORY AS RELATED TO ORIGINAL DESIGN AND EACH TEMPERATURE
TYPE 2 Zeolite Tensile Strength Ratio

Mix Type

TSR Ratio

ORIGINAL DESIGN ZEOLITE 255F ZEOLITE 235F
TYPE 1 Zeolite Tensile Strength Ratio

Mix Type

TSR Ratio

TSR Ratio

ORIGINAL DESIGN

ZEOLITE 255F

ZEOLITE 235F

Mix Type
SISTER COMPANY PIKE INDUSTRIES FOUND SOME ISSUES WITH TSR
PRODUCTION

• ASTEC DOUBLE BARREL
• CALIBRATED THE ASPHA-MIN TO PLANT’S EXPECTED TONS PER HOUR
• EXPECTED TPH - 200-250 TPH
• SILO STORAGE TIME APPROX 20-30 MINUTES
• WEATHER: COOL LOW MID 40’S HIGH 65
The material coming out of the dryer-drum discharge chute was uncoated.

When the material was loaded into the truck the material was coated.
During production, noticed higher amp draw for the slant conveyor.
Production

- Easier to produce than expected
- Some concerns about baghouse temperature
- Did experience decrease in tons per hour
Seeing is Believing!

Hot Mix 314 F

Warm Mix 254 F
Laydown

- Did not tell crew temperatures at first
- Fewer paver fumes
- Private crew did the hand work
- Little to no build up in trucks
Warm Asphalt Mix at lower temperature could be handled in the same way as normal HMA.
TYPE 2 PLACEMENT
Compaction
CONDUCTED NUCLEAR GAUGE TESTS
Mix cooled quickly
Loadout with Warm Asphalt
TEST RESULTS OF PRODUCED MIX

- TSR TYPE 2 ONE HOUR CURE = 87%
- TSR TYPE 1 ONE HOUR CURE = 80%
- BETTER THAN MIX DESIGN RESULTS
Cores yielded good density
PAVEMENT DENSITY-AVERAGE

BASED ON FIELD MTD 1 HOUR CURE

TYPE 1 PG 70-22 94.4% (230F)

TYPE 2 PG 70-22 95.3% (230F)

TYPE 2 PG 70-22 96.5% (240F)

AVERAGE DENSITY STANDARD TEMPERATURES 93%
Cure Time – Early Concern

- In some cases, Europeans allow pavement to “cure” before allowing traffic on roadway.
- When does Warm Asphalt’s workability end?
- Will pavements rut if traffic allowed on an hour or so after placement?
Conclusions-Pro

- Mix can be produced and placed at lower temperatures
- Density did not seem to be an issue
- Lower emissions from load out and paving spread
- Workability improved
- Fuel savings
Conclusions-Con

- Expense of the additive offsets fuel savings
- Concerned about lower temperatures in Baghouse-corrosion, caking of bags
- Possible lower tph, more load on slant conveyor
- Low TSR values in design stage-did not see stripping in place-may be too soon
- Need larger project to gain experience
A Word About Cost

- Most additives, warm asphalt or other, are expected to increase the price of the HMA
- Some processes or additives may require plant/production modifications
- It is not anticipated that the fuel savings will totally offset these costs
Questions to be answered

• Are there economic benefits?
• How will compaction be affected?
• What temperature should volumetric specimens be compacted?
• Antistrip - Is it needed?
• DOT acceptance?
• EPA possible involvement???
Questions?
Projected cost savings used oil

Warm Asphalt Cost of Fuel Savings
based on Used Oil

Temperature of Mix

Dollar Per Ton of Fuel

$1.20
$1.30
$1.40
$1.50
$1.60
$1.70
$1.80
$1.90
$2.00

325 300 275 250 225
Economics of warm asphalt

- Zeolite- $0.60 per pound (not including shipping)
- 0.3% per ton of mix
- 6 # per ton
- $3.60 per ton of mix