Perpetual Pavement Asphalt Concrete on WAY-30 Test Road and APLF

Ohio Asphalt Paving Conference
February 4, 2009

Roger Green
Office of Pavement Engineering
Ohio Dept. of Transportation

Shad Sargand
Department of Civil Engineering
Ohio University
Fatigue Behavior (S-N Diagram)

Log Number of Load Cycle

Strain

Thin

Thick and Flexible
Perpetual Pavement

- No (Fatigue) Cracking → Structural Design
- No Rutting
- No Thermal Cracking → Mix Design
- No Stripping
Perpetual Design Criteria

Surface: High Performance
Base: Economical & Durable
Fatigue Resistant Layer

Maximum Tensile Strain for Fatigue Control
<table>
<thead>
<tr>
<th>Thickness (inches)</th>
<th>Material</th>
<th>Design Air Voids (%)</th>
<th>PG Binder</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25</td>
<td>(856) Stone Matrix Asphalt Concr, 12.5mm</td>
<td>3.5</td>
<td>76-22M</td>
<td>Durable Rut Resistant</td>
</tr>
<tr>
<td>1.75</td>
<td>(442) Asphalt Concrete Inter. Course, 19mm Type A</td>
<td>4.0</td>
<td>76-22M</td>
<td>Durable Rut Resistant</td>
</tr>
<tr>
<td>9</td>
<td>(302) Asphalt Concrete Base</td>
<td>4.5</td>
<td>64-22</td>
<td>Economical Stable</td>
</tr>
<tr>
<td>4</td>
<td>(302) Special Fatigue Resistant Base Layer</td>
<td>3.0</td>
<td>64-22</td>
<td>Fatigue Resistant</td>
</tr>
<tr>
<td>6</td>
<td>(304) Aggregate Base</td>
<td></td>
<td></td>
<td>Stable</td>
</tr>
</tbody>
</table>
Project Information

- Project 44(2004)
- Project Length: 7.97 miles
- Letting Date: 2/20/2004
- Contractor: Beaver Excavating Company
- Total Cost: $47.2 million
- Work Started: 3/15/2004
- Open to Traffic: 12/19/2005
WAY-30 ODOT Work Plan

ODOT
Costs & User Delay
Safety
Ride and Condition

OU
Dynamic Pavement Response
Determine Mechanical Properties
Verify Design Procedure
WAY-30 ODOT Work Plan

• Economic Analysis
 – Initial Construction Cost
 – Rehabilitation Cost
 – Force Account Maintenance
 – Salt Usage
 – Pavement Marking Costs
WAY-30 ODOT Work Plan

• Safety
 – Fatal Accidents
 – Nonfatal Accidents
 – Property Damage Accidents
 – Pavement Skid
WAY-30 ODOT Work Plan

• User Delay
 – Pavement Construction Duration
 – Rehabilitation Duration
 – Queues During Rehabilitation
WAY-30 ODOT Work Plan

• Ride and Condition
 – Pavement Ride Quality
 – Pavement Condition Rating
 – Pavement Damage (deflection)
 – Subgrade Moisture & Water Table
 – Climatic Data
 – Noise
WAY-30 Ride Quality

Right Wheel IRI

Year

Right Wheel IRI

W1 - Section C (CL)
WAY-30 Project Background

Research Objectives for ORITE and OPE

• The WAY-30 bypass consists of 3 research projects:
 – Climatic and Dynamic Load Response Instrumentation
 – Determination of mechanical properties of materials used.
 – Assessment of the perpetual pavement concept for asphalt concrete.
• These projects, designed by ODOT, will incorporate new and innovative design procedures, specifications, test procedures, and construction techniques.
Project Objectives

- Review design procedures used by ODOT.
- Develop comprehensive instrumentation plans to monitor environmental and load response parameters.
- Monitor dynamic responses of the pavement structure during non-destructive testing and controlled vehicle load testing.
- Determine mechanical properties of the pavement materials used during construction and in service.
- When the project is completed, the Office of Pavement Engineering (OPE), with information provided by ORITE, will be able to achieve the strategic goal of developing design procedures for these long life pavements.
Instrumentation Plan

- ORITE’s instrumentation plan will monitor environmental and response parameters in each pavement type.
- Environmental parameters to be monitored in only one section of each pavement type.
- Dynamic load responses will be collected.
WAY-30 Instrumentation

US 30 Bypass of Wooster, Ohio
Test Section at Geyer’s Chapel

Test Section at Sta 664+00

West End Tie-In
Test Section at McQuaid Road
Test Section at McQuaid Road

Weather Station

Test Section, STA 876+60

McQuaid Rd Overpass
<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>LAYERS</th>
<th>MANUFACTURER</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature</td>
<td>Pavement, Base</td>
<td>Measurement</td>
<td>MRC Thermistor</td>
</tr>
<tr>
<td></td>
<td>and Subgrade</td>
<td>Research Corp.</td>
<td></td>
</tr>
<tr>
<td>Moisture</td>
<td>Base and Subgrade</td>
<td>Campbell Scientific, Inc.</td>
<td>TDR Probes</td>
</tr>
</tbody>
</table>

Automatic weather station installed to collect data related to air temperature, precipitation (rain and snow), wind speed and direction, relative humidity, and incoming solar radiation.
Instrumentation Schedule

Asphalt Concrete Test Sections

<table>
<thead>
<tr>
<th>MEASUREMENT</th>
<th>PARAMETERS</th>
<th>MANUFACTURER</th>
<th>SENSOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Displacement</td>
<td>Load Response and Seasonal Response</td>
<td>Macro Sensors</td>
<td>Macro Sensors LVDTs (Linear Variable Displacement Transducer)</td>
</tr>
<tr>
<td>Pressure</td>
<td>Load Response and Seasonal Response</td>
<td>Geokon Inc.</td>
<td>Geokon 3500 Pressure Cell</td>
</tr>
<tr>
<td>Strain</td>
<td>Longitudinal and Transverse Strain</td>
<td>Dynatest</td>
<td>Dynatest PAST II Strain Transducer</td>
</tr>
</tbody>
</table>
WAY-30 FRL Longitudinal Strain Response

25 mph Test: ODOT 20 Kip Single Axle Truck Run 1-I

Longitudinal Strain
Fatigue Resistance Layer - AC 876A
Single Axle Truck - 20 Kips - 25 MPH Morning

Time (sec)

Strain (ue)
WAY-30 FRL Longitudinal Strain Response

25 mph Test: ODOT 20 Kip Single Axle Truck Run 1-I
WAY-30 LVDT Response

25 mph Test: ODOT 20 Kip Single Axle Truck Run 1-II

LVDT Deflections
AC 876A

Deflection (mils)

Time (sec)

LVDT-001 mils
LVDT-002 mils
LVDT-003 mils
LVDT-004 mils
Conclusions

• In the December 2005 CVL test, at low temperature, the longitudinal strain in the FRL was under 35 με, even at the slowest speeds.

• In general, observed strains under FRL remained below design strains, even under hot summer conditions for CVL truck loads at near highway speeds (45 mph (72 km/h) and higher). CVL loads are heavier than most truck loads.

• Loads at slower speeds (e.g. 5 mph (8 km/h)) were higher, but would only be experienced rarely, e.g. when traffic is stalled. The perpetual pavement FRL is designed to withstand a limited number (dozens or perhaps hundreds) of these loads with no ill effect.
Conclusions

• Strains developed at the bottom of the ATB layer are lower than the strains developed at the bottom of the fatigue layer, as expected. Overall, the maximum longitudinal strains in the ATB layer are slightly higher than the maximum transverse strain in all axle configurations and loading conditions during the December tests, and for the single axle loads during the July tests.

• Maximum longitudinal strains are slightly higher than maximum transverse strains for all December runs and all single axle runs in July.

• The maximum pressure observed in the subgrade during CVL tests on the AC sections was 6.5 psi (44.8 kPa) at 45 mph (72 km/h) under a 40 kip (178 kN) tandem axle load.
Warm Mix Asphalt Perpetual Pavement
ORITE Warm Mix Asphalt Research Project

- Detailed field, controlled environment, and laboratory evaluation of Aspha-min, Evotherm, and Sasobit and Conventional mixes
 - Field study in Guernsey County, OH
 - Controlled load and environment test at ORITE’s Accelerated Pavement Load Facility (APLF) in Lancaster, OH
 - Laboratory studies of materials
- Project sponsored by the Ohio Department of Transportation (ODOT) and the US Federal Highway Administration (FHWA)
Controlled Load and Environment Testing at the Accelerated Pavement Load Facility (APLF)

- WMA and HMA surface layers have been built and will be tested at the Accelerated Pavement Load Facility (APLF)
 - Same types as those used on GUE-541 (Aspha-min, Evotherm, Sasobit, and HMA)
 - Built on perpetual pavement sections at two thicknesses
 - Perpetual Pavement similar to WAY-30 construction
- Testing under load at three temperatures:
 - high (105°F (40.6°C)),
 - medium (70°F (21.1°C)),
 - low (40°F (4.4°C))
- FWD
- Collect Pavement Response data
- Infrared camera (during construction)
Accelerated Pavement Load Facility (APLF)

- Complete, full-scale two-lane pavement, base, and subgrade construction.
- Testing of Asphaltic Materials and PCC.
- Full environmental control to regulate humidity and temperature from 10°F (-12°C) to 130°F (54°C).
- Multiple test paths across the 32-ft (9.75 m) wide pavement.
- A rolling tire load of 9000 lb (40 kN) to 30,000 lb (133 kN) can be applied to simulate a slowly passing truck (≤5 mph (≤8 km/h)) with standard single or dual tires or wide single tires, up to 500 times per hour.
Installation at the APLF

Paving in the APLF

Sensor placement
APLF Equipment

Load Wheel behind beam

← Profilometer placed under load wheel beam
Abbreviations used

- AC=Asphalt Concrete
- WMA=Warm Mix Asphalt
- HMA=conventional Hot Mix Asphalt
- ODOT=Ohio Department of Transportation
- 304 or DGAB=Dense Graded Aggregate Base (ODOT item 304)
- 448 Intermediate Layer=ODOT Item 448
- ATB=Asphalt Treated Base: Modified ODOT Item 302
- FRL=Fatigue Resistant Layer
Layers of WMA pavements constructed in APLF profile view of Lanes 1 and 2

<table>
<thead>
<tr>
<th>Lane No.</th>
<th>South Pit Wall</th>
<th>North Pit Wall</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1/4 in. (3.2 cm) Warm Mix AC Surface Layer (Evotherm)</td>
<td>1 1/4 in. (3.2 cm) Warm Mix AC Surface Layer (Evotherm)</td>
</tr>
<tr>
<td></td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
</tr>
<tr>
<td></td>
<td>4 3/4 in. (12.1 cm) 448 Intermediate AC Layer</td>
<td>7 3/4 in. (19.7 cm) 448 Intermediate AC Layer</td>
</tr>
<tr>
<td></td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
</tr>
<tr>
<td></td>
<td>9 in. (22.9 cm) 304</td>
<td>6 in. (15.2 cm) 304</td>
</tr>
<tr>
<td></td>
<td>~ 5 ft. (1.52 m) A6-A7 Subgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 in. (30.5 cm) Coarse Aggregate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit Bottom</td>
<td>Pit Bottom</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 1/4 in. (3.2 cm) Warm Mix AC Surface Layer (Sasobit)</td>
<td>1 1/4 in. (3.2 cm) Warm Mix AC Surface Layer (Sasobit)</td>
</tr>
<tr>
<td></td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
</tr>
<tr>
<td></td>
<td>5 3/4 in. (14.6 cm) 448 Intermediate AC Layer</td>
<td>7 3/4 in. (19.7 cm) 448 Intermediate AC Layer</td>
</tr>
<tr>
<td></td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
</tr>
<tr>
<td></td>
<td>8 in. (20.3 cm) 304</td>
<td>6 in. (15.2 cm) 304</td>
</tr>
<tr>
<td></td>
<td>~ 5 ft. (1.52 m) A6-A7 Subgrade</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12 in. (30.5 cm) Coarse Aggregate</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pit Bottom</td>
<td>Pit Bottom</td>
</tr>
<tr>
<td>Lane</td>
<td>South Pit Wall</td>
<td>Load Wheel Direction</td>
</tr>
<tr>
<td>------</td>
<td>----------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>3</td>
<td>1 1/4 in. (3.2 cm) Warm Mix AC Surface Layer (Aspha-Min)</td>
<td>1 1/4 in. (3.2 cm) Warm Mix AC Surface Layer (Aspha-Min)</td>
</tr>
<tr>
<td></td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
</tr>
<tr>
<td></td>
<td>6 3/4 in. (17.1 cm) 448 Intermediate AC Layer</td>
<td>7 3/4 in. (19.7 cm) 448 Intermediate AC Layer</td>
</tr>
<tr>
<td></td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
</tr>
<tr>
<td></td>
<td>7 in. (17.8 cm) 304</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1 1/4 in. (3.2 cm) 446 Type I AC Surface Layer</td>
<td>1 1/4 in. (3.2 cm) 446 Type I AC Surface Layer</td>
</tr>
<tr>
<td></td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
<td>3 in. (7.6 cm) 446 Type II AC Leveling Layer</td>
</tr>
<tr>
<td></td>
<td>7 3/4 in. (19.7 cm) 448 Intermediate AC Layer</td>
<td>7 3/4 in. (19.7 cm) 448 Intermediate AC Layer</td>
</tr>
<tr>
<td></td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
<td>4 in. (10.2 cm) Fatigue Resistant AC Layer</td>
</tr>
<tr>
<td></td>
<td>6 in. (15.2 cm) 304</td>
<td></td>
</tr>
</tbody>
</table>
Layout of WMA pavements constructed in APLF plan view

Lane No.	South Pit Wall	North Pit Wall
1 | 13in (33.0cm) Evotherm w/Sensors | 16in (40.6cm) Evotherm |
2 | 14in (35.6cm) Sasobit w/Sensors | 16in (40.6cm) Sasobit |
3 | 15in (38.1cm) Aspha-Min w/Sensors | 16in (40.6cm) Aspha-Min |
4 | 16in (40.6cm) HMA control w/Sensors | 16in (40.6cm) HMA control |

Load wheel direction

Lane Width

G = 3ft (0.91m)

L = 8ft (2.44m)

Ohio University - Department of Civil Engineering
APLF Monitoring

- Environmental parameters
 - pavement layer temperature
 - Base temperature and moisture
 - Subgrade temperature and moisture
- Load response
 - Displacement
 - Strain
 - Pressure
Instrumentation in APLF

1”=2.54 cm; 1’=0.305 m, 1.5’=0.46 m

Load wheel direction

South Pit Wall

- 1 1/4" Warm Mix AC Surface Layer
- 3" Type II AC
- 448 Intermediate Layer
- 4" FR Layer
- 304 DGAB
- 5' A6-A7 Subgrade
- 12" Coarse Aggregate

Pit Bottom

- 8' (2.44 m)
- 1.5'
- 1.5'
- 1.5'
- 1.5'
- 1.5'
- 1.5'
- 5.5'
- (1.68 m)
- 6.9 m

Instrumentation Points:

- Thermocouples (3)
- LVDT 1 Ref. ~ 5'
- LVDT 2 - Ref. Top of Subgrade
- Pressure Cell
- Dyn. 4 Trans.
- Dyn. 3 Long.
- Dyn. 2 Trans.
- Dyn. 1 Long.

Dimensions:

- 1.5'
- 1.5'
- 5.5'

Accurate to scale: 1" = 2.54 cm; 1’ = 0.305 m; 1.5’ = 0.46 m.
Tests were conducted in this order:
- Low temperature (40°F (4.4°C)) -- Completed
- Medium temperature (70°F (21.1°C)) -- Completed
- High temperature (105°F (40.6°C)) – HMA completed. Will complete WMA sections by end of January

At each temperature and for each pavement:
- Collect data from instruments at beginning with tire loads of 6 kip (27 kN), 9 kip (40 kN), and 12 kip (53 kN)
- 10,000 passes of 9 kip (40 kN) dual tire load at 5 mph (8 km/h)
- Collect data from instruments at end with same loads as at beginning
- Each type of pavement is tested in sequence
- Periodically measure profile with profilometer to check for rutting
Asapha-min S Section Initial Results from APLF

0 Runs at high temperature. Load = 12 kip.
Asapha-min S Section Initial Results from APLF

0 Runs at high temperature. Load = 12 kip.
Asapha-min S Section Initial Results from APLF

0 Runs at high temperature. Load = 12 kip

ASPHA-MIN Section

105°F Surface

0 Runs

Pressure, psi

Time, seconds

Pressure Cell
FWD Strain Response
Longitudinal strain in FRL

FWD Testing, DYN 03 Response
82 MPa (12 kips), South Sasobit

Micro Strain

Time (Sec)
FWD Deflection Response
Deep LVDT

FWD Testing, LVDT 01 Response
82 MPa (12 kips), South Sasobit

Deflection (mm)

Time (sec)
Measured sensor responses under FWD load plate

<table>
<thead>
<tr>
<th>Nominal Air Temperature</th>
<th>1S (Evotherm)</th>
<th>2S (Sasobit)</th>
<th>3S (Asphamin)</th>
<th>4S (Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Thickness</td>
<td>13" (33.0 cm)</td>
<td>14" (35.6 cm)</td>
<td>15" (38.1 cm)</td>
<td>16" (40.6 cm)</td>
</tr>
<tr>
<td>40°F (4.4°C)</td>
<td>12.5</td>
<td>20.2</td>
<td>16.1</td>
<td>10.1</td>
</tr>
<tr>
<td>70°F (21.1°C)</td>
<td>30.4</td>
<td>42.7</td>
<td>16.7</td>
<td>36.3</td>
</tr>
<tr>
<td>104°F (40.0°C)</td>
<td>55.6</td>
<td>70.4</td>
<td>52.2</td>
<td>51.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Longitudinal Micro-Strain (Tensile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°F (4.4°C)</td>
</tr>
<tr>
<td>70°F (21.1°C)</td>
</tr>
<tr>
<td>104°F (40.0°C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Average Transverse Micro-Strain (Tensile)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°F (4.4°C)</td>
</tr>
<tr>
<td>70°F (21.1°C)</td>
</tr>
<tr>
<td>104°F (40.0°C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vertical Pressure on Subgrade - psi (kPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°F (4.4°C)</td>
</tr>
<tr>
<td>70°F (21.1°C)</td>
</tr>
<tr>
<td>104°F (40.0°C)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Deflection at Deep LVDT - mils (microns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40°F (4.4°C)</td>
</tr>
<tr>
<td>70°F (21.1°C)</td>
</tr>
<tr>
<td>104°F (40.0°C)</td>
</tr>
</tbody>
</table>
Measured sensor responses under rolling wheel load

<table>
<thead>
<tr>
<th>Nominal Air Temperature</th>
<th>1S (Evotherm)</th>
<th>2S (Sasobit)</th>
<th>3S (Asphamin)</th>
<th>4S (Control)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC Thickness</td>
<td>13" (33.0 cm)</td>
<td>14" (35.6 cm)</td>
<td>15" (38.1 cm)</td>
<td>16" (40.6 cm)</td>
</tr>
<tr>
<td>40° F (4.4°C)</td>
<td>17.6</td>
<td>17.1</td>
<td>15.8</td>
<td>17.6</td>
</tr>
<tr>
<td>70° F (21.1°C)</td>
<td>37.2</td>
<td>40.4</td>
<td>29.6</td>
<td>33.3</td>
</tr>
<tr>
<td>104° F (40.0°C)</td>
<td>30.6</td>
<td>33.7</td>
<td>30.3</td>
<td>56.9</td>
</tr>
<tr>
<td>Average Longitudinal Micro-Strain (Tensile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40° F (4.4°C)</td>
<td>22.5</td>
<td>21.2</td>
<td>19.5</td>
<td>18.8</td>
</tr>
<tr>
<td>70° F (21.1°C)</td>
<td>54.9</td>
<td>58.3</td>
<td>38.1</td>
<td>33.6</td>
</tr>
<tr>
<td>104° F (40.0°C)</td>
<td>174.8</td>
<td>165.7</td>
<td>159.1</td>
<td>116.2</td>
</tr>
<tr>
<td>Average Transverse Micro-Strain (Tensile)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40° F (4.4°C)</td>
<td>1.50 (10.3)</td>
<td>0.74 (5.1)</td>
<td>1.24 (8.6)</td>
<td>0.86 (6.0)</td>
</tr>
<tr>
<td>70° F (21.1°C)</td>
<td>3.75 (25.9)</td>
<td>3.03 (20.9)</td>
<td>2.84 (19.6)</td>
<td>2.51 (17.3)</td>
</tr>
<tr>
<td>104° F (40.0°C)</td>
<td>7.59 (52.3)</td>
<td>6.66 (46.0)</td>
<td>6.64 (45.8)</td>
<td>6.22 (42.9)</td>
</tr>
<tr>
<td>Vertical Pressure on Subgrade - psi (kPa)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40° F (4.4°C)</td>
<td>2.24 (56.7)</td>
<td>1.97 (50.0)</td>
<td>1.80 (45.7)</td>
<td>1.93 (49.0)</td>
</tr>
<tr>
<td>70° F (21.1°C)</td>
<td>4.00 (102)</td>
<td>4.62 (117)</td>
<td>2.99 (75.9)</td>
<td>2.97 (75.4)</td>
</tr>
<tr>
<td>104° F (40.0°C)</td>
<td>7.47 (190)</td>
<td>11.1 (282)</td>
<td>9.95 (253)</td>
<td>7.23 (184)</td>
</tr>
<tr>
<td>Deflection at Deep LVDT - mils (microns)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40° F (4.4°C)</td>
<td>13.0 (330)</td>
<td>12.0 (305)</td>
<td>11.0 (280)</td>
<td>10.0 (255)</td>
</tr>
<tr>
<td>70° F (21.1°C)</td>
<td>25.0 (635)</td>
<td>24.0 (605)</td>
<td>23.0 (580)</td>
<td>22.0 (555)</td>
</tr>
<tr>
<td>104° F (40.0°C)</td>
<td>47.0 (1190)</td>
<td>46.0 (1160)</td>
<td>45.0 (1135)</td>
<td>44.0 (1110)</td>
</tr>
</tbody>
</table>
Section 1S profile history showing rutting

Typical Profile History
Section 1S - 104° F

Surface Elevation

Profile Point (0.5 in. (1.27 cm) /point)

No. Wheel Passes
0, 100, 300, 1000, 3000, 10000

10,000

100

300

1,000

3,000

11.9 4.7

11.7 4.6

11.4 4.5

11.2 4.4

10.9 4.3

10.7 4.2

0 50 100 150 200
WMA Conclusions

• In this study, the main purpose of studying the different WMA sections was to determine the rutting behavior of the different mixes

• Early consolidation of warm AC mixes under rolling tires was more than the conventional mix, after which the rate of consolidation was slightly less for the warm AC mixes than that for the conventional mix. Of the three warm AC mixes, Evotherm showed more consolidation than Aspha-Min and Sasobit, which were about the same.
Perpetual Pavement Conclusions

- The main purpose of looking at the different thicknesses of the perpetual pavement intermediate layers was to compare the strains in the FRLs.
- Reducing the thickness of the intermediate (ODOT Item 448) course from 7.75 in (19.7 cm) to as small as 4.75 in (12.1 cm) and increasing the thickness of the DGAB (ODOT Item 304) layer a corresponding amount did not significantly increase the strain at the base of the FRL.
- When examining FRL strain behavior, it should be noted that this testing was conducted with the pavement at a uniform high temperature; in the field there would typically be a temperature gradient that would moderate the effect.
FWD Conclusions

- While trends of increasing response with increasing temperature and decreasing AC thickness generally prevailed under the rolling wheels, there were two major differences in responses measured with the FWD and the rolling wheels. First, transverse strains were much higher than longitudinal strains under the rolling wheels at higher temperatures, and higher than either strain under the FWD load plate. Second, the magnitudes of surface deflection and vertical pressure on the subgrade were much larger under the 5 mph (8.0 km/hr) rolling wheels than under the FWD load plate at higher temperatures. Both observations confirm that vehicles moving at creep speed induce higher responses than the FWD, which is designed to simulate vehicles traveling at normal highway speeds.