Columbus Equipment Company and Roadtec Partner to Optimize Uptime and Production Through Industry-Leading Support of Innovative, High-Quality, Dependable Road Building and Asphalt Paving Equipment.

The biggest benefit of Roadtec equipment is uptime. We just don’t have the downtime we have had with other machines.

Dean Breese; Vice President, Gerken Paving Inc.

Columbus Equipment Company and Roadtec Partner to Optimize Uptime and Production Through Industry-Leading Support of Innovative, High-Quality, Dependable Road Building and Asphalt Paving Equipment.

The biggest benefit of Roadtec equipment is uptime. We just don’t have the downtime we have had with other machines.

Dean Breese; Vice President, Gerken Paving Inc.

Serving You From Ten Statewide Locations

COLUMBUS (614) 443-6541

TOLEDO (419) 872-7101

CINCINNATI (513) 771-3922

RICHFIELD (330) 659-6681

CADIZ (740) 942-8871

DAYTON (937) 879-3154

MASSILLON (330) 833-2420

ZANESVILLE (740) 455-4036

PAINESVILLE (440) 352-0452

PIKETON (740) 289-3757

www.columbusequipment.com
ProSizer® Series

Columbus Equipment Company and Roadtec Partner to Optimize Uptime and Production Through Industry-Leading Support of Innovative, High-Quality, Dependable Road Building and Asphalt Paving Equipment.

The biggest benefit of Roadtec equipment is uptime.

"We just don't have the downtime we have had with other machines."

Dean Breese; Vice President, Gerken Paving Inc.

www.columbusequipment.com

COLUMBUS (614) 443-6541
TOLEDO (419) 872-7101
CINCINNATI (513) 771-3922
RICHFIELD (330) 659-6681
CADIZ (740) 942-8871
DAYTON (937) 879-3154
MASSILLON (330) 833-2420
ZANESVILLE (740) 455-4036
PAINESVILLE (440) 352-0452
PIKETON (740) 289-3757

Serving You From Ten Statewide Locations
Ohio's Dependable Dealer

ProSizer® 3600

The all new ProSizer® 3600 is a single-load crushing plant for processing virgin aggregate and recycled materials. Its robust 36” x 46” horizontal shaft impactor can be paired with a 5’ x 20’ conventional screen or a 6’ x 18’ high frequency screen to meet your application needs. This crushing plant can be powered by diesel, electric or hybrid power.

Learn more at the Columbus Equipment Company booth at the 2018 Ohio Asphalt Expo.

ASTEC MOBILE SCREENS an Astec Industries Company
2704 WEST LEFEVRE ROAD · STERLING, IL 61081 USA · 800.545.2125 · FAX 815.626.6430 · kpijci.com
6 The President's Page
10 404LVT Continues to Gain Acceptance
12 Guide to Sustainable Asphalt Pavements Available
14 ODOT Increases Centerline Rumble Stripes
16 Technical Seminar Topics
Mix Type Selection to Optimize Pavement Performance for High Stress Applications
20 Battling Intersection Rutting in West Virginia
By Robert Horan, P.E., Asphalt Institute
23 FPO's Technical Capabilities Grow with Staff Addition
24 Mark Your Calendars
25 FPO Scholarship Thank Yous
26 Index to Advertisers

Flexible Pavements of Ohio is an association for the development, improvement and advancement of quality asphalt pavement construction.

Ohio Asphalt is the official magazine of Flexible Pavements of Ohio. Published four times a year, advertising deadline is the 1st of the month preceding publication. Ohio Asphalt is not copyrighted and portions may be reprinted with the permission of Flexible Pavements of Ohio, 6205 Emerald Parkway, Suite B, Dublin, OH 43016; telephone: 614.791.3600, 888.446.8649; website: www.flexiblepavements.org.
Shelly & Sands, Inc.
Building on a Long History of Quality Construction

Asphalt Materials & Paving • Construction Aggregate
Liquid Asphalt & Emulsions • Construction Management
Site Development • Design Build

Since 1944, from locations throughout the state, Shelly & Sands has been safely and efficiently delivering the highest quality construction materials and projects in Ohio and Ohio's neighbor states.

Contact us today to let us know how we can earn the opportunity to assist you in making your project a success.

Corporate Headquarters
3570 South River Road • P.O. Box 1585 • Zanesville, Ohio 43702-1585
740 453-0721 • www.shellyandsands.com
The Ohio Transportation Engineering Conference (OTEC) boasted 3,800 registrants this year and for good reason. Held October 29-30 in Downtown Columbus, the conference provided a terrific opportunity for engineers and other transportation professionals to get informed about the latest in their respective disciplines. Sessions pertaining to asphalt showed strong attendance, marking the fact of asphalt’s critical role in providing mobility for Ohioans. Asphalt topics included a discussion of asphalt base mixture research; new tools for pavement construction quality assurance; 100% RAP base courses; Illinois Department of Transportation’s (IDOT) remedy for failing longitudinal joints; and a presentation on the use of heavily polymer-modified asphalt mix for service interchange ramps.

The OTEC exhibition area granted opportunity to connect with asphalt users — and it was used to the fullest, as Flexible Pavements of Ohio staff was joined by The Asphalt Institute and friends of the industry to advocate for asphalt as the material of choice for Ohio’s pavements.

Based on information shared in the sessions pertaining to Asphalt and Pavement Research, what’s for certain is that there will be changes in asphalt paving field operations that are significant and meaningful.

For starters, longitudinal joint longevity research completed by IDOT (“Longitudinal Joint Seal Development & Implementation”) has determined specifically formulated polymer asphalt banding placed at the joint in preparation to placing an asphalt overlay will eliminate cracking distress. IDOT presenter Jim Trepanier, P.E., explained that after a 10-year trial of the material, IDOT is on its way to statewide implementation of the practice. How it works is accomplished by the hot asphalt mix drawing up the polymer-modified asphalt binder migrating into the voids of the mix — much like wicking. The material fills the voids, in effect increasing density to a level where air and moisture cannot permeate the pavement and do significant damage. This material is not just any run-of-the-mill polymer asphalt. It is quite viscous and modified with the highest...
levels of elastomeric polymer. Trepanier emphasized the necessity for surface prep and a well-placed tack coat — one that provides full coverage of the surface to be paved and good bond. Experience in Illinois has shown shear cracks may develop along the edge of the joint treatment if good bond is not achieved. The use of the joint material has a significant safety implication! It relieves the need for longitudinal joint coring and the associated exposure of quality-control personnel to live traffic. Proprietary names for the joint material are “J-Band” and “VRAM” (Void Reducing Asphalt Membrane).

Asphalt base courses were on the examination table at OTEC, as Dr. Mary Robbins, Ohio Research Institute for Transportation and the Environment (ORITE), reviewed research initiated by ODOT on asphalt base durability (“Evaluation of Asphalt Base Course Construction and Acceptance Requirements, Phase 1.”) The historical performance of Ohio’s heavy-duty asphalt pavements has been remarkable. After decades of use most are performing to “perpetual pavement” standards. Durability is paramount in attaining long life, and ODOT wants to keep it that way. With an eye toward all future heavy-duty asphalt pavements someday being built to perpetual pavement standards, the asphalt industry is sure to gain from the research findings. In light of an ODOT diminishing construction inspection force, the department saw a need to evaluate the adequacy of base course construction materials specifications in ensuring uniformity and density. The task took researchers to the field sampling 720 asphalt cores taken from 51 projects, located in 31 counties and 11 ODOT districts. It was a comprehensive evaluation and included review of construction specifications from other state DOTs. Performance tests were evaluated for possible incorporation to the ODOT specs. These included tests for predicting fatigue cracking, susceptibility to moisture damage and disintegration. Research findings from cores taken revealed segregation in large stone base mixtures. This was creating excessive variability in mix gradations that in turn had an effect on durability and pavement density. Interestingly, the research revealed large stone base mixes averaged 93% density — a good density for such a mix, and an indicator that these mixes can be constructed to a sufficient density level. However, the data also showed variability was excessive. Modification of existing paving practices to maintain integrity of large stone base mixes when placed would have a serendipitous result; consistent density, a stronger base and improved durability.

In recent years, ODOT maintained a policy of using portland cement concrete for new construction of ramps at service interchanges. With the advent of HIMA (highly modified asphalt) and perpetual pavement technology, asphalt stands a chance to prove its worthiness. In the seminar: “Use of Highly Modified Asphalt in Service Interchange at Interstate 70 & Wilson Road,” presenters Patrick Bierl, of ODOT, and Larry Shively, of The Shelly Company CRH, told the story of the design and installation of ODOT’s first asphalt ramps using binder performance grade PG 88-22. The pavement design was fashioned after a Perpetual Pavement thickness design that had been proof tested in ORITE’s Accelerated Pavement Load Facility. Bierl explained that the project was a demonstration to determine if an asphalt buildup composed of HIMA could resist rutting and deformation in this highest of stress locations — the terminus of a ramp where haulers brake hardest. The Wilson Road Interchange provides access to a heavy commercial carrier sector and service area for over the road haulers passing through Columbus. Conventional asphalt mixes used previously didn’t bear up under the loads without rutting. This demonstration project used a 13-inch-thick asphalt buildup. All layers were modified using highly elastomeric PG 88-22. The return of asphalt ramps to service interchanges is sure to speed up construction and highly modified asphalt mixtures make possible long-term rut-free pavement.

JUST BACK FROM OTEC and heading to the 2020 Ohio Asphalt EXPO — the asphalt industry’s premier educational event March 24-25.
No matter how high the traffic volume, there’s an asphalt design that can handle it. Through pavement design and material selection, asphalt pavements can be built to carry any load. Plus specialty mixes can be engineered to meet specific needs and climate conditions, all while remaining cost-effective to build and easy to maintain.

WHEN IT COMES TO FLEXIBILITY ASPHALT PERFORMS

LEARN MORE AT WWW.DRIVEASPHALT.ORG
404LVT CONTINUES TO GAIN ACCEPTANCE

As discussed in the Ohio Asphalt fall 2019 issue, “Low-Volume Road Engineering,” for best performance, low-volume roads and streets need different asphalt concrete materials from those commonly used on highways. Flexible Pavements of Ohio (FPO) crafted a specification, 404LVT, specifically for use on low-volume roads. A recent survey of producers indicates that the use of this specification by local agencies is continuing to grow, as in 2019, 14 additional projects used 404LVT.

The 404LVT specification was developed for use by local agencies that may not have the need to use the complex procedures that ODOT specifications require for the development of asphalt concrete mix designs. 404LVT is a recipe mix based on ODOT’s traditional 404 mix designs, which can be produced by any asphalt concrete producer. 404LVT follows the path of a finer-aggregate gradation and higher binder content to achieve better performance on low-volume roads.

Of course ODOT does not use 404LVT, as it requires specific laboratory mix designs for each project. However, ODOT has been using a similar mix, SS 860,
Thinlay Asphalt Concrete, which can be designed for medium- or light-traffic applications. ODOT is using Thinlay Asphalt Concrete for its pavement preservation projects on general system (two-lane) highways. Thin asphalt concrete overlays are used to extend pavement surface life but cannot correct structural distress in pavements.

So, if you manage low-volume roads and are looking for better life from your asphalt concrete surfaces; you may want to give 404LVT a try. Guidance on the use of 404LVT and Thinlay Asphalt Concrete can be found in the “FPO Technical Bulletin: Thinlays for Use as Pavement Preservation Surface Treatments,” which can be found at http://www.flexiblepavements.org/sites/www.flexiblepavements.org/files/thinlaytb23feb2016_rev19sep2017_rev_for_print.pdf.

The National Asphalt Pavement Association (NAPA) has published a guide to provide the asphalt industry, pavement owners and specifiers with the information, tools and resources needed to understand the sustainable attributes of asphalt.

The guide, “Sustainable Asphalt Pavements: A Practical Guide,” was developed with the support of the Federal Highway Administration and authored by Dr. Adam Hand, Ph.D., P.E., of the University of Nevada, Reno, and Dr. Stephen Muench, Ph.D., P.E., of the University of Washington.

The four sections of the guide are available as separate documents or as part of the larger guide. The four publications in this series are:

1. SIP 101: Sustainability Overview. A practical definition of sustainability and the elements of and reasons for a business approach to sustainability.

2. SIP 102: Sustainability Specifics. Specific sustainability actions that can be taken in corporate/organizational strategy, project delivery, mix design, materials production, construction activities and pavement design.

3. SIP 103: Procuring and Evaluating Sustainability. How sustainability is included in public project procurement, and how sustainability efforts are evaluated within the industry.

4. SIP 104: How to Develop a Sustainability Program. Important components of a company’s sustainability program, including goals, best practices, implementation and reporting.

Each volume is accompanied by a webinar hosted by the series authors. The webinars and publications are available at no charge from NAPA’s webpage at www.AsphaltPavement.org/PracticalGuide.
MILL IT OUT. LAY IT DOWN.
WE HAVE YOUR ASPHALT TRANSFER NEEDS COVERED.

FOR MORE DETAILS CONTACT:
Chuck Barnes 216-906-5862
Tim Cox 513-518-8619

NORTHSTAR ASPHALT: PAVING THE WAY TO YOUR NEXT DESTINATION
Experienced asphalt paving contractor serving the Akron-Canton metropolitan area and surrounding counties.
Innovative paving solutions for difficult projects.
Service, quality and commitment.

NORTHSTAR ASPHALT INC.
www.wengercompanies.com 7345 Sunset Strip N.W. | P.O. Box 2646 | North Canton, Ohio 44720-2646 | 330-497-0936
In response to safety concerns, the Ohio Department of Transportation (ODOT) has determined to expand the use of centerline rumble stripes on some of the state’s busiest roadways. ODOT recently completed a 100-mile pilot program to evaluate the effectiveness of centerline rumble stripes and is proceeding with full implementation starting in the 2020 construction season.

ODOT’s Traffic Engineering Manual has been updated and the department estimates approximately 600 miles of rumble stripes will be installed annually. Candidate projects are two-lane, undivided roadways with a speed limit greater than 45 mph and where a minimum of one-inch of new asphalt is placed.

The asphalt industry has been supportive of this safety initiative; however, officials have registered concerns as to the impact of centerline rumble stripes on the longevity and performance of longitudinal joints. In response, ODOT has developed Supplemental Specification 874 Longitudinal Joint Preparation for use in locations where ODOT will require centerline rumble stripes. This Supplemental Specification has two methods — trimming a minimum of 3 inches from the cold longitudinal joint or utilizing Void Reducing Asphalt Membrane to improve joint density. The goal of this Supplemental Specification is to ensure a durable longitudinal joint.

For additional information, the relevant section of the Traffic Engineering Manual is available on ODOT’s website at: http://www.dot.state.oh.us/Divisions/Engineering/Roadway/DesignStandards/traffic/TEM/Documents/Part_14_101819_Revision_NoMarkup_190918.pdf.

Advertise in Ohio Asphalt

Mark Wolf
Advertising Sales Representative
mwolf@triad-inc.com
866.679.9340 • fax: 614.846.8763

FIX EVERY PROBLEM
WITH OUR FAMILY OF PRODUCTS

For more information on our full line of products, contact Customer Service at 800-441-4880.

SHOP ONLINE
uniquepavingmaterials.com

Ohio Asphalt
Before we review mix selection for low-volume composite pavements (coming spring 2020), let’s revisit our last article in the Ohio Asphalt 2019 fall issue, where we reviewed standard ODOT mix specifications used for heavy-traffic and medium-traffic applications.

In the Pavement Design Manual (PDM), ODOT typically requires Item 442 Superpave Asphalt Concrete for heavy-traffic routes and Item 441 Asphalt Concrete for medium-traffic routes. And in many cases following that approach is perfectly appropriate and acceptable.

But, what do you do if significant rutting and/or shoving has been prevalent on your route on past project(s)? Is it still appropriate to use the standard Item 441 Asphalt Concrete or Item 442 Superpave Asphalt Concrete? The answer to that question depends largely upon distress (rutting & shoving) severity combined with designer experience and engineering judgement.

If rutting and/or shoving is severe, a designer should review “Pavement Guidelines for Treatment of High Stress Locations” found in Appendix B of ODOT’s PDM. These guidelines will allow a designer to determine if the pavement is considered a High Stress Location.

In Appendix B, ODOT defines a high stress location as:

High Stress Location: High stress locations are found at areas of high acceleration and braking, at intersections, sharp curves, ramps, and where heavy vehicles frequent at slow speeds. High stress locations occur at intersections with forced stop control and one or more of the following criteria:

- The approach grade to the stop control is greater than or equal to 3.5%
- Current Design Designation of 500 trucks per day or greater in the design lane
- Current Design Designation of 250 trucks per day or greater in a turn lane

High stress locations occur on ramps or sharp curves with or without forced stop control that have greater than 250 trucks per day or have exhibited significant repeated rutting problems in the past. As truck counts on ramps are often unknown, and the definition of a sharp curve depends upon the speed of the curve, some judgment is required on new locations.

High stress locations occur on stretches of roadway that continue to exhibit significant rutting after several trials of standard mixes. These stretches of roadway generally exhibit rutting due to some combination of long or steep grades; trucking/traffic patterns, counts, or weights.

High stress locations occur at standard bus stops on bus routes or at park and ride lots.

High stress locations occur at all truck and bus lots located in the Department’s rest areas.

Rutting and shoving at urban/suburban intersection – forced stop condition
If a project or section is considered High Stress, ODOT’s typical recommendation is:

1) If the high stress location would normally specify Item 442 Superpave Asphalt Concrete, upgrade to a non-standard modified-asphalt concrete pavement mix design (available from the Office of Materials Mgmt.) or consider a mix such as Item 443 Stone Matrix Asphalt

2) If your high stress location would normally specify Item 441 Asphalt Concrete, upgrade to Item 442 Superpave Asphalt Concrete

Upgrading mixes according to these guidelines is fairly common in Ohio, but this approach can also create economic and constructability challenges as course mixes optimized for rut resistance are often placed on roadways with varying width, intersections and other unique characteristics. Nonetheless, if rutting and shoving are problems on your route, upgrading materials in accordance with these guidelines is certainly an appropriate way to address the problem.

But … there are also projects that may have minor rutting possibly in combination with elevated truck counts, slow speeds, multiple intersections, borderline geometrics or other conditions that approach but may not quite reach the conditions that define a high stress location. In addition, there are also owners, agencies or engineers that, at times, are interested in specifying a higher quality mix to improve performance and increase durability on a select project, even if it means spending a little extra to achieve those benefits.

So, for projects that don’t quite meet the requirements of a high stress location and/or projects where an improvement in performance and durability is desired, it is suggested you consider trying a simple mix adjustment known as “grade bumping.” Grade bumping is a concept where you specify the mix most appropriate for your project, but you use an “as per plan” note to change the binder. In most cases, you would
be bumping the binder up one grade to provide the desired performance and durability benefits. Note that grade bumping is also most common in surface course applications.

For example, if the heavy-traffic interstate project requires a standard 12.5 mm Item 442 surface with a PG 70-22M binder, use a plan note to bump up the binder to a PG 76-22M or maybe even a PG 88-22M binder. Superpave mixes using PG 76-22M binders have been used successfully in Ohio for years. The PG 88-22M binder is relatively new to Ohio, but potentially offers significant benefits for our highest stress locations as well as some perpetual pavement applications. Another example that is very popular and highly recommended for medium-traffic applications is to specify an Item 441 Type 1 surface using a PG 70-22M binder instead of the standard PG 64-22 binder. This particular mix has been successfully used in parts of Ohio for decades and has performed extremely well in various applications, including two-lane state highways, urban and suburban arterials as well as many other route types.

What are some of the benefits of grade bumping?

- The mix specification selected is still based upon the traffic demands unique to your project, which typically results in a mix with a finer gradation and a higher polymer binder content that is resistant to both rutting and cracking
- Local aggregates and common gradations are used
- Standard design methods apply and, in many cases, existing JMFs (job mix formulas) are available
- Contractors are familiar with producing and placing these mixes
- These mixes tend to be more economical, especially when compared to more exotic specialty mixes that are less common in Ohio
- In general, these mixes have long, proven and very positive histories in Ohio

So, if there’s a need to correct rutting and/or shoving on your project, first review Appendix B in ODOT’s PDM and determine if your pavement qualifies as a High Stress Location. Then, based upon that determination combined with experience and engineering judgement, you will need to choose to either upgrade specifications or use specialty mixes per ODOT’s High Stress Guidelines, or utilize the grade bumping concept to enhance the performance characteristics of the mix most appropriate for the traffic on your project.

If you have any questions about choosing the most appropriate mix for high stress applications or whether or not you should consider grade bumping, contact Flexible Pavements of Ohio at (614) 791-3600 or info@flexiblepavements.org.
YOUR INDUSTRY IS OUR BUSINESS.

At Hahn Loeser, our Construction Team members offer our clients exceptional strength, leadership and industry knowledge. Our responsive team of hardworking professionals is committed to seeking outstanding results for our clients around the corner and across the country.

For updates, subscribe to our blog at constructionlawinsights.com.

HAHN LOESER & PARKS LLP | HAHNLAW.COM | 216.621.0150
Rob Remington, Esq. | Construction Group Chair | rrr@hahnlaw.com
Andy Natale, Esq. | anatale@hahnlaw.com
Aaron Evenchik, Esq. | aevenchik@hahnlaw.com
Jeff Roush | Director of Construction Services | jroush@hahnlaw.com

Cleveland | Columbus | Naples | Fort Myers | San Diego | Chicago
RUTTING IN BATTLING INTERSECTION

(Editor’s note: This article, which originally appeared in the summer 2019 issue of Asphalt Magazine, is being reprinted with permission from the Asphalt Institute.)

By Robert Horan, P.E., Asphalt Institute
There was a time when it was fairly common to go to a conference and hear a presentation about how to build a high-performance intersection that would stand up to the combination of heavy loading and slow or stopped trucks. That was a popular presentation topic at that time because many agencies were struggling with the challenge of coming up with the rut-resistant asphalt mixtures required at those locations.

It is less common to hear a presentation like that now, and the reason is simple. With the adoption of the PG binder grading system and Superpave mixture design procedures (as well as mixture performance testing) in the mid-1990s, agencies now have the tools to design and construct asphalt mixtures that are both stable enough to dramatically reduce rutting even in extreme loading scenarios at intersections and durable enough to have long service lives.

The West Virginia Department of Highways (WVDOH) tackled the challenge of solving a big problem of early and severe rutting at heavily loaded intersections on coal hauling routes. The results are impressive.

Recently, representatives of Asphalt Institute and WVDOH made a site visit to evaluate the performance of a high-performance asphalt pavement intersection that was built in July 2002.

The location is at the intersection of U.S. Route 52 and WV State Route 37 in Wayne County, where two coal hauling routes come together — known as the Fort Gay Intersection.

A 2002 *Asphalt Magazine* article previously told the story of the intersection with its extreme loading conditions. WVDOH engineers said that the intersection probably had the heaviest vehicle loading in the state and that there was a history of early failures of the previous efforts to address severe rutting problems using mill and overlay with standard mixes containing unmodified binders. This approach had repeatedly resulted in severe rutting at the intersection within six to nine months after construction. WVDOH decided that a different approach to solving this rutting problem was needed.

The 2002 project included full-depth rehabilitation of some areas with a 37.5 mm base mix and a 12.5 mm surface mix where the channelized rutting was the worst, and a 2-inch mill and fill overlay using 12.5 mm surface mix for the rest of the intersection.

While preparing the project in 2002, WVDOH worked with contractor Mountain Enterprises to design, produce and construct asphalt mixtures that could stand up to the extreme loading conditions on the project. A major change was WVDOH specifying the use of polymer-modified asphalt.
(PMA) meeting the requirements of PG 76-22. The goal was to develop a rut-resistant asphalt mixture that could be used to build a high-performance intersection at this location and could also be used at heavily loaded locations throughout the state.

For both the base and surface mixes, a combination of limestone aggregate and angular blast furnace slag was used in the mix design. The surface mix contained 95% slag. As part of the mix design process, WVDOH conducted laboratory rut testing using the Asphalt Pavement Analyzer (APA) on the Superpave Gyratory Compactor specimens to measure the rut-resistance properties of both the base and surface mixes. The APA is lab testing equipment that simulates the application of a large number of heavy loadings on the lab-compacted specimen. Both mixes easily met the 6 mm-maximum rut-depth criteria.

Fast-Forward 17 Years

At the time of the visit the intersection had been in place for almost 17 years, and only minimal rutting had occurred despite being subjected to hundreds of very heavily loaded coal haul (slow-moving or stopped) trucks on a daily basis.

During the recent visit, rut measurements throughout the project found that rutting had not significantly worsened compared to measurements taken over 10 years ago. No rut depths over 5/8 inch were measured, even at the locations where the heavily loaded coal trucks would be stopped for extended periods of time. The average rut depth for all measurements was around 3/8 inch. However, moderate to severe cracking in the project pavement was noted throughout the project.

John Crane of the Materials Division of WVDOH is the lead technical person in the state when it comes to asphalt materials and pavements. He had this to say about the performance of the Fort Gay Intersection:

“Untouched for 17 years, the Fort Gay Intersection is an amazing success story as WVDOH’s first project utilizing a highly modified asphalt binder. This success has confirmed the investment that the DOH made back in 2002 and solidified the use of highly modified asphalt mixes as a permanent tool in our toolbox. With all great stories, there are ups and downs, and while the Fort Gay Intersection has performed extremely well at resisting rutting, the 17 years of coal truck after coal truck have not been kind to it. Over the last few years, the 2-inch overlay has begun exhibiting environmental distresses and cracking throughout the entire section. It appears as though the time to preserve our investment is upon us so that we may keep the success of the Fort Gay Intersection alive.”

Crane continued: “Throughout West Virginia, we see PG 64E-22 (new name for PG 76-22) mixtures being used to combat similar situations at other intersections and on heavily traveled roadways in hopes to extend the overlay’s life expectancy. Throughout the last five years, the WVDOH has constructed over 100 projects, roughly 30 of which included intersection rehabilitations, totaling over 525,000 tons of highly modified asphalt concrete.”

Stormy Brewster of Marathon Petroleum Company LP, the supplier of the polymer-modified binder PG 76-22 binder for this project, is very pleased with the excellent performance.

“The Fort Gay Intersection is a perfect example of why we use polymer-modified construction materials on high-volume roads. The road needed rut resistance and fatigue cracking resistance, which is why it was necessary to specify a polymer-modified PG76-22. Now a 17-year-old road, the WVDOH may have spent more money upfront but we have saved a lot in longevity. As has been demonstrated here and on many roads and labs across the world, polymer-modified asphalt will increase durability and cracking resistance,” said Brewster.

The key takeaway from the excellent performance of the asphalt pavement at the Fort Gay Intersection project? WVDOH was able to use a combination of polymer-modified binder, a savvy mix design process and good construction practices to solve its rutting problems at heavily loaded intersections. To its credit, it has built on what it learned from that experience to solve similar problems throughout the Mountain State.

Horan is a senior regional engineer with the Asphalt Institute, based in Virginia.
John Crane, P.E., (W.Va.) joins Flexible Pavements of Ohio (FPO) as a Pavements, Materials and Field Applications Engineer, bringing more than eight years of asphalt materials-related experience from the West Virginia Division of Highways’ (WVDOH) Materials Division.

During his tenure at the WVDOH, in Charleston, John worked his way through the roles within the agency’s Asphalt Materials Group, most recently serving as the State Asphalt Engineer after attaining his professional engineer’s license.

“John’s knowledge and experience with asphalt materials will be a tremendous asset for our members, pavement owners and specifiers,” said FPO President & Executive Director Cliff Ursich.

He obtained both his bachelor’s and master’s degrees in civil engineering from West Virginia University. While working toward his master’s degree, John realized his love for the complex nature of asphalt materials, and it has been his passion ever since.

As the State Asphalt Engineer, John was charged with providing technical guidance and training to industry and WVDOH personnel regarding asphalt materials, paving operations and sampling and testing procedures. This included the coordination and enhancement of the WVDOH Asphalt Plant Technician certification program, as well as the Marshall and Superpave mixture design certification programs. Additionally, he was responsible for the advancement and upkeep of asphalt-related material specifications and procedures for the WVDOH. He was also tasked with maintaining the AASHTO accreditation for the asphalt materials laboratories at the WVDOH’s Materials Division as well as ensuring that the highway department’s 10 district laboratories were held to an equal standard.

Over the years, John has served on many state and regional task groups and subcommittees related to asphalt materials. Most recently, he served as the WVDOH co-chair to the Asphalt Joint Subcommittee of West Virginia, a cooperative group devoted to the improvement of state’s asphalt pavements.

John’s addition to the FPO staff completes a 2017 initiative to provide localized technical services for both pavement owners and the membership. “FPO’s Board of Directors authorized the addition of two engineering positions in the northern and southern half of the state,” Ursich said. “John’s hire will complement the activities already being performed by Jim Marszal, his counterpart in the northern half of the state.”

While primarily serving in Southern Ohio, John’s unique knowledge and expertise will be available to all FPO members. “It is a very exciting time in the world of asphalt right now with new developments coming to many different aspects of the industry,” he said. “I am very anxious to get to know the FPO members and customers, and I hope that with my experience and passion for asphalt materials I will be able to help further develop the FPO mission in promoting the use of asphalt pavements.”

John, his wife, Rachael, and their two children have recently relocated from West Virginia to the Columbus area. While he and his family will always have the mountains in their hearts, they are excited to begin their new adventure in the Buckeye State. John can be reached at john.crane@flexiblepavements.org.
Level 2 Asphalt Quality Control Technician Training
January 29-31
Ohio University Lancaster Campus
1570 Granville Pike
Lancaster, OH 43130

Flexible Pavements of Ohio (FPO) offers this training course to prepare individuals having basic lab familiarity to take the ODOT Level 2 Asphalt Technician Exam. After the training, students will have the opportunity to take the ODOT written examination for Level 2 Asphalt Concrete Technician approval.

Ohio Asphalt Paving Conference
February 5, 2020
The Ohio State University
The Fawcett Center
2400 Olentangy River Rd.
Columbus, OH 43210

The Ohio Asphalt Paving Conference is a collaborative effort of state and local government, academia and the asphalt industry to present practical, usable technologies and strategies for the design and construction of asphalt pavements.

Comprehensive Asphalt Mix Design School
February 24-28, 2020
Ohio University Lancaster Campus
1570 Granville Pike
Lancaster, OH 43130

This course meets the requirements for ODOT HT.306, Asphalt Level 3 training. It is designed to give the participants a working knowledge of the principles associated with asphalt concrete volumetric mix design. On the final day of the course, students will have the opportunity to take the ODOT examination for Level 3 Asphalt Concrete Technician approval.

Ohio Asphalt Expo
March 24-25, 2020
Columbus/Polaris Hilton Hotel
8700 Lyra Dr.
Columbus, OH 43240

The Asphalt Expo is Ohio’s premier asphalt pavement event with multiple concurrent educational sessions and an indoor and outdoor trade show and exhibition. If you construct, inspect, manage or maintain local or private transportation infrastructure, the Ohio Asphalt Expo has the information you need to ensure a successful, long-lasting asphalt pavement.

Visit FPO’s website at www.flexiblepavements.org for more information regarding these events.
Dear Clifford Ursich:

Thank you for choosing me as a recipient for the Flexible Pavements of Ohio Scholarship. I was very happy and appreciative to learn that I was selected.

I am a construction management major at Bowling Green State University. I plan to pursue a career as a project manager in the commercial construction industry. I am currently a junior and plan to graduate in the spring of 2021. Thanks to you, I am one step closer to that goal.

I am very dedicated to my academics and continue to maintain a 4.0 GPA. I feel that my Co-Op experience has been very beneficial and has helped me excel in my studies. My current Co-Op with Corna Kokosing is helping to further develop my skills in the commercial construction industry.

By awarding me the Flexible Pavements of Ohio Scholarship, you have lightened my financial burden which allows me to focus more on the most important aspect of school, learning. Your generosity has inspired me to help others and give back to the community. I hope one day I will be able to help students achieve their goals just as you have helped me.

Sincerely,
Alex Tremper
Bowling Green State University

Dear Mr. Fair,

I hope that you can pass this email on to whomever is on the Scholarship Committee and all those involved. I really appreciate the opportunity that I have been blessed with to continue my secondary education thanks to scholarships like the Flexible Pavements of Ohio Scholarship.

With these scholarships I am able to focus on school with less stress about figuring out how I’m going to pay for today’s expensive college costs. However, every dollar that goes to my college expenses I have been able to look at as an investment; an investment that will pay off in more ways than one; an investment that someday I will appreciate more than I do now because I know it will all be worth it when I am finally working in the construction industry fulfilling my dream. I really cannot express my appreciation, but thank you and whoever was involved in this process very much.

Regards,
Lucas Critelli
University of Cincinnati

Dear Flexible Pavements of Ohio,

My name is Allyson Fomich and I am the 2019 recipient of the Burgett Family/Kokosing Construction Co. Scholarship. I wanted to take some time to both introduce myself and express my gratitude for your support; I am so thankful for any assistance and appreciate your generosity greatly.

I am currently in my fifth year at The Ohio State University studying Civil Engineering with minors in both Spanish and Humanitarian Engineering. I have had the opportunity to combine my skills in engineering and problem solving with my passion for service, completing projects in both Costa Rica and Honduras and pursuing a Global Option in Engineering. My current capstone project is for a water distribution system in Tanzania.

I have had internship experience in both highway and vertical construction with positions in Estimating and Project Management. Currently, I am working in the field for Elford Inc. at the OSU East Hospital project and will be continuing my internship part-time throughout this school year. I have accepted an offer as an Assistant Project Manager with Elford and am excited to gain as much experience in construction before I graduate in May 2020!

Thank you again for your generous support; it truly goes a long way towards my development as a student and professional. I look forward to my career in the construction industry and future involvement in the OSU community.

Sincerely,
Allyson Fomich
The Ohio State University

2020-2021 FPO Scholarship Entries Being Accepted
Flexible Pavements of Ohio is pleased to announce the 25th year of its Ohio Asphalt Scholarship program. The period for submitting online applications for the 2020-2021 academic year is open through Jan. 31, 2020. During this period, students may find information about the program and apply using the online application on the Flexible Pavements of Ohio website at: http://www.flexiblepavements.org/scholarships/asphalt-scholarships-program.

The college scholarship program is available to undergraduate civil engineering and construction management/engineering students in their sophomore or junior years who will be juniors or seniors during the 2020-2021 academic year. Scholarship recipients must agree to take a course in asphalt pavement technology before graduating. Graduate civil engineering students studying asphalt pavement technology are also eligible.
Advertisers Index

<table>
<thead>
<tr>
<th>Company Name</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asphalt Materials Inc.</td>
<td>8</td>
</tr>
<tr>
<td>BOCA Construction</td>
<td>11</td>
</tr>
<tr>
<td>Columbus Equipment Company IFC</td>
<td>3</td>
</tr>
<tr>
<td>Columbus Equipment Company</td>
<td>3</td>
</tr>
<tr>
<td>Ebony Construction Company</td>
<td>8</td>
</tr>
<tr>
<td>Hahn Loeser & Parks LLP</td>
<td>19</td>
</tr>
<tr>
<td>The Gerken Companies</td>
<td>19</td>
</tr>
<tr>
<td>John R. Jurgensen Company</td>
<td>26</td>
</tr>
<tr>
<td>Kokosing Construction Company Inc.</td>
<td>5</td>
</tr>
<tr>
<td>The McLean Company</td>
<td>21</td>
</tr>
<tr>
<td>The McLean Company</td>
<td>BC</td>
</tr>
<tr>
<td>Northstar Asphalt Inc.</td>
<td>13</td>
</tr>
<tr>
<td>Ohio CAT</td>
<td>13</td>
</tr>
<tr>
<td>SealMaster</td>
<td>18</td>
</tr>
<tr>
<td>The Shelly Company</td>
<td>8</td>
</tr>
<tr>
<td>Shelly & Sands Inc.</td>
<td>5</td>
</tr>
<tr>
<td>Southeastern Equipment Company Inc. IBC</td>
<td></td>
</tr>
<tr>
<td>Transtech Systems Inc.</td>
<td>17</td>
</tr>
<tr>
<td>Unique Paving Materials Corporation</td>
<td>15</td>
</tr>
</tbody>
</table>

Valley Asphalt

Dedicated to showing Ohio's future workforce that construction careers are both purposeful and rewarding

Valley Asphalt Corporation

11641 Mosteller Road • Cincinnati, OH 45241 • 513.771.0820 • www.ribuildamerica.com

WWW.IBUILDAMERICA-OHIO.COM

The official homepage of Ohio’s construction workforce development movement

Resources for employers, families, job seekers and students

#ibuildamericaOHIO
BETWEEN PAVING, COMPACTING AND MILLING, ROAD WORK IS NEVER DONE. Make the job easier with Southeastern’s full-line of road building equipment, live bottom trailers and asphalt distributors. Contact your local branch today for rental and equipment sales.

OHIO
BRILLIANT 740-598-3400
BRUNSWICK 330-225-6511
CAMBRIDGE 740-432-6303
DUBLIN 614-889-1073
GALLIPOLIS 740-446-3910
HEATH 740-522-3500
MANSFIELD 419-529-4848
MARIETTA 740-374-7479
MENTOR 440-255-6300
MONROE 513-539-9214
CANTON 330-494-3950
PERRYSBURG 419-874-0331

INDIANA
EVANSVILLE 812-476-7321
FORT WAYNE 260-483-8868
INDIANAPOLIS 317-872-4877

MICHIGAN
HOLT 517-694-0471
NOVI 248-349-9922

KENTUCKY
BURLINGTON 859-586-6133
For your success.

www.wirtgen-group.com/technologies

ROAD AND MINERAL TECHNOLOGIES. The WIRTGEN GROUP owes its strength to the excellence of its product brands - WIRTGEN, VÖGELE, HAMM and KLEEMANN - with their unique wealth of experience. Put your trust in the WIRTGEN GROUP.

Find out more: www.wirtgen-group.com/america

WIRTGEN AMERICA, INC. · 6030 Dana Way · Antioch, TN 37013 · Telephone: 615-501-0600