Perpetual Pavement Demonstration
Project Under Construction

HMA Segregation: Causes & Cures, Part 1
Crush and Run Demonstration
Something to Think About When Planning Preventive Maintenance
YOU WOULDN'T DARE THINK OF PUTTING ALL YOUR VIRGIN AGGREGATE INTO ONE COLD FEED BIN. THEN WHY TREAT YOUR RAP THAT WAY?

RAP fines can have up to twice as much AC content as 1/2x1/4 and more than four times as much as 3/4x1/2. So, feeding RAP out of one bin makes it virtually impossible to hold spec, especially with Superpave. Now, with a PEP Fold ‘n Go mobile screening plant, you can consistently fractionate RAP at high tonnages the same as you do your virgin aggregate.

If you run more than one HMA plant, the Fold ‘n Go is quickly and easily moved to handle RAP fractionating at each plant. This heavy-duty mobile screen plant is totally self-contained with three on-board stacking conveyors and sets up in just 15 minutes. RAP replaces expensive virgin ingredients pound for pound and without loss of mix quality. Start realizing serious material savings with your investment in a Fold ‘n Go mobile screening plant and call Cantwell Machinery Co.

Sales-Rental-Parts-Service-Financing

- Columbus: 614-276-5171
- Perrysburg: 419-837-9425
- Old Washington: 740-489-5031
- Cincinnati: 513-489-3040
- Macedonia: 330-467-4171
- Piketon: 740-289-1818

Email: info@cantwellmachinery.com
Website: www.cantwellmachinery.com

Southeastern Equipment Co., Inc.

Sale • Parts • Service • Rental • Leasing
For All Your Construction Equipment Needs
Call or Visit the Southeastern Branch Nearest You
Cambridge-NorthCanton-Gallipolis-Dublin-Monroe-Perrysburg
Mentor-Brunswick-Mansfield-Heath-Marietta-Brilliant

BOMAG 800-798-5438
www.southeasternequipment.com
ON THE COVER

FPO-member Shelly & Sands is off to a strong start in the construction of ODOT’s perpetual pavement demonstration project on U.S. 30 in Wayne County. See page 12 for information on the construction and research studies underway on this project. Photo credit to the Ohio Department of Transportation.

Officers

Chairman
Howard J. Wenger
Northstar Asphalt Co.

Co-Chairman
Gerald N. Little
Shelly & Sands, Inc.

Treasurer
James S. Tharp
The Shelly Co.

Board of Directors
Peter M. Alex
The Shelly Co., Twinsburg Div.

Wayne Brassell
Kokosing Construction Co., Inc.

Brent Gerken
Gerken Paving, Inc.

James P. Jurgensen
Valley Asphalt Corp.

Paul Scala
Kenmore Construction Co.

Michael D. Thompson
Barrett Paving Materials, Inc.

Donald C. Weber
The Shelly Co., Findlay Div.

Staff
Fred F. Frecker
P.E., President & Executive Director

Clifford Ursich
P.E., Executive Vice President

Jerry Wray
P.E., Vice President of Government Relations

Florence H. Flowers
Administrative Assistant

William H. Fair
P.E., Customer Service Engineer

Creative Director
Janine Robinson

Layout
Jennifer Schaefer

Advertising Sales
Jackie Kiefer

Ad Sales & Editorial Preparation
TRIAD, Inc.
6525 Busch Blvd., Suite 207
Columbus, OH 43229
614.846.8761 or 1.800.288.7423
fax: 614.846.8763

editorial e-mail: editorial@triad-inc.com
advertising e-mail: sales@triad-inc.com

ON THE COVER

FPO-member Shelly & Sands is off to a strong start in the construction of ODOT’s perpetual pavement demonstration project on U.S. 30 in Wayne County. See page 12 for information on the construction and research studies underway on this project. Photo credit to the Ohio Department of Transportation.

Flexible Pavements of Ohio is an association for the development, improvement and advancement of quality asphalt pavement construction.

info@flexiblepavements.org

Ohio Asphalt is published by Flexible Pavements of Ohio four times a year. Advertising deadline is the 1st of the month preceding publication. Ohio Asphalt is not copyrighted and portions may be reprinted with the permission of Flexible Pavements of Ohio. P.O. Box 16186, Columbus, OH 43216; telephone: 614.221.3402, 888.446.8649 (Ohio only); fax: 614.221.0394; website: www.flexiblepavements.org
ARE WE STILL AT WAR?

Lately I have had a number of people ask me whatever happened to the “Asphalt/Concrete War.” There hasn’t been anything in the newspapers for almost a year now and folks are wondering if it’s over. Well, I can assure you it’s not over. We are still very much engaged, but on a different “front” so to speak.

One recommendation from the neutral third party’s review of ODOT’s pavement selection process was for a facilitator to conduct regularly scheduled meetings between ODOT and the industries. ODOT hired a facilitator from New Jersey and there has been approximately one meeting a month over the past year.

These meetings have been very fruitful. A number of issues have been brought to the table, with presentations made by the industries and formal decisions rendered by the department in the form of “white papers.” Examples include the design assumption used in the determination of thickness of both HMA and PCC pavements and cost estimates for use in the Life Cycle Cost Analysis (LCCA). A number of issues are still on the table and I suspect these monthly meetings will continue throughout 2005.

ODOT has also provided both industries the opportunity to review all LCCAs for accuracy before they are presented to the Department’s Pavement Selection Committee. During 2004, 16 LCCAs were reviewed and commented on by both industries.

You may recall that, based on the neutral third party’s recommendation, any pavement type with a lifecycle cost of 10 percent less than the alternative must be selected by the Department’s Pavement Selection Committee. Pavement types with LCCAs within 10 percent of each other are deemed to have equivalent cost and are selected based on a list of secondary factors.

Of the 16 LCCAs conducted in 2004, 14 had a lifecycle cost spread of more than 10 percent; 12 were selected as flexible pavements and two were selected as rigid pavements. The remaining two projects had lifecycle cost differences of less than 10 percent, and both projects were selected as rigid pavements.

In 2005, ODOT will return to the Legislature to seek approval of its bi-annual budget. During each of the past two budget-approval processes the asphalt/concrete war spilled onto the legislative battlefield. The concrete paving industry attempted to place amendments in these bills in 2003 and 2001. Then 2006 brings the election campaign for a new governor, and with a new governor there is always the potential for change in leadership at ODOT as we start 2007.

So as you can see, the stakes are as high as they have ever been. Not only is the asphalt/concrete war still active, if history is any indicator, I think it’s a pretty good bet that it will continue to be so for quite some time.
For years our firm has been advising subcontractors that in Ohio, a “pay when paid” clause (contractor will pay sub within days of being paid by the owner) does not shift the risk of owner non-payment like a “pay if paid” clause (payment by the owner is a condition precedent to payment by the contractor to the sub), meaning that contractors still must pay subs within a “reasonable period of time” under a “pay when paid” clause.

A Court of Appeals (based in Cleveland) on July 22, 2004, has confirmed that interpretation in the case of Chapman Excavating v. Fortney & Weygandt, Inc. The subcontract clause interpreted in that case said:

“Partial payments of the subcontract sum shall be made within ten (10) days after payment is received by (contractor) from Owner.”

The Court held that this was a “pay when paid” clause which only shifted the timing of payment but did not change the sub’s entitlement to payment from the contractor within a “reasonable period of time,” regardless of the status of payment from the owner to the contractor. The Court further determined that a reasonable period of time had elapsed so the sub was due the money.

This case demonstrates the crucial differences between “pay when paid” and “pay if paid” clauses under Ohio law.
INTRODUCTION:

Segregation in a Hot Mix Asphalt (HMA) mixture can be defined as the separation of the coarse aggregate particles in the mix from the rest of the mix. The segregation can take one of three forms – random, side to side or longitudinal, and truckload to truckload. Each type of segregation is caused by a different problem or problems. However, each type of segregation affects the long-term durability of the asphalt concrete pavement structure.

Segregated areas in the surface of the pavement have a rougher texture than the surrounding pavement area. In addition, the density of the mix is much lower in the segregated locations compared to the density of the HMA mix in non-segregated areas. Pavement deterioration of the segregated areas, in the form of raveling, typically occurs quickly under traffic. With more time and with traffic loading, the raveled areas can increase in both size and depth, with a pothole forming in the pavement surface. With additional time and traffic, it is possible for the raveling to progress completely through the pavement layer.

This is the first of a three-part article that will briefly describe the various causes for each of the three types of segregation. In addition, it will discuss the most efficient means to prevent each type of segregation from occurring. In part 1, emphasis will be placed on the most prevalent problem of truckload to truckload-type segregation.
TRUCKLOAD TO TRUCKLOAD SEGREGATION

Truckload to truckload-type segregation, sometimes incorrectly called end of load segregation, is shown in Figure 1. This type of segregation typically occurs as two very rough, textured areas in a transverse direction, one on each side of the centerline of the asphalt paver. The size of the segregated area is dependent on whether or not the paver is moving forward when the segregated HMA mix passes under the paver screed. If the paver is stopped, the segregated areas will normally be relatively small and concentrated in two slightly oblong shapes, generally no more than five feet long. If the paver is moving as the segregated material passes under the paver screed, the segregated areas will occur as two long, longitudinal ovals, up to 15 feet in length.

In fact, none of these are the cause.

It is often believed that truckload to truckload segregation is related to the operation of the surge silos at the asphalt plant. Transport of mix up the slat conveyor, delivery of the mix at the top of the silo, either directly into the silo or into a hopper or “batcher” at the top of the silo, free fall of the mix into a silo which is relatively empty, and not keeping mix in the silo above the top of the cone – all of these factors are mentioned as additional possible causes of truckload to truckload segregation. In fact, none of these are the cause.

It is common sense why none of these potential problem areas are the cause of truckload to truckload segregation. In essence, if the largest aggregate particles in the mix separated from the rest of the mix at any of these locations, it would be almost impossible for those particles to collect ONLY at the end of a truckload of mix. It would be virtually impossible for those particles to collect at the end of each truckload on a continuous basis – truckload to truckload to truckload.

LOADING THE HAUL TRUCK

The primary cause of truckload to truckload segregation is the delivery of the HMA mix from the silo into the haul truck. Segregation of the mix occurs just as segregation of the aggregate occurs when the material is dropped on top of a conical pile. The largest aggregate particles in the mix roll down the sides of the pile and collect at the bottom of the pile.

Figure 2 shows the loading of an end-dump haul truck from the stockpile. It is often believed that truckload to truckload segregation has a variety of causes. Most of those incorrect beliefs are related to the production of the HMA mix at the asphalt plant. Segregation of the coarse aggregates in the plant stockpiles, improper loading of the cold feed bins with segregated materials, variation of the aggregate feed into the asphalt plant, separation of the coarse aggregate particles from the rest of the aggregate inside the mixing drum, and improper discharge of the mix from the drum onto the slat conveyor – all of these factors are mentioned as possible causes of truckload to truckload segregation.
silo at an asphalt plant. In this case, all of the mix is delivered into the truck bed in one drop. As the mix builds up in the truck bed, the largest aggregate particles in the mix begin to roll downhill. Those particles roll to the front of the bed, the sides of the bed, and to the back of the bed or to the tailgate on the truck. If the drop of mix is deposited into the middle of the length of the truck bed, then an equal amount of coarse aggregate (segregated material) will roll to both the front and the back of the truck bed. If the mix is deposited more to the front of the truck bed, which is typically the case for weight distribution, more large-aggregate particles will roll to the tailgate area on the truck.

Truckload to truckload segregation is really a combination of two factors. The first part consists of the segregated material which comes out of one truck last – the large aggregate which collects at the front of the truck bed. The second part consists of the segregated material which comes out of the next truck first – the large aggregate which collects at the tailgate of the truck bed. Since most end-dump trucks tend to be loaded front of center, more of the segregation on a truckload to truckload basis comes from the large aggregate particles that collect at the back of the truck. In most cases, therefore, truckload to truckload segregation is more “beginning of the next load” compared to the “end of the first load.”

Figure 3 shows large aggregate particles which have rolled downhill toward the front of the truck bed and collected at that point. Figure 4 illustrates large-aggregate particles which have rolled downhill toward the tailgate of the truck bed and have collected at the back of the truck. When the segregated material which comes out of one truck last (at the front bulkhead in the truck) is added to the segregated material which comes out of the next truck first (at the rear tailgate of the truck), truckload to truckload segregation occurs.

In order to completely eliminate the truckload to truckload segregation problem, it is necessary to load the end dump truck correctly. This means that a normal tandem or tri-axle truck needs to be loaded with three drops of mix instead of one. The first drop of mix (see Figure 5) is immediately next to the front bulkhead of the truck bed – as far forward as reasonably possible. This process will reduce the distance that the coarse aggregate particles can roll to the front of the truck bed and thus significantly reduce the amount of segregation that will occur during the loading operation. Then it is necessary for the truck driver to pull the truck forward so that the second drop of mix can be deposited into the truck bed adjacent to the tailgate on the truck (see Figure 6). This process will reduce the distance that the coarse aggregate particles can roll to the back tailgate and also significantly reduce the amount of segregation that will occur during the loading operation. The truck driver then needs to move the truck backward so that the third drop of mix can be made into the center of the length of the truck bed, between the first and second drops of mix (see Figure 7). Properly loaded, the haul truck will have mix more than half way up the height of the tailgate (see Figure 8).

If a semi-truck trailer is used to haul the mix to the paver, multiple drops of mix should also be deposited into the length of the truck bed. The first drop of mix should be made as close to the front bulkhead of the bed as possible to reduce the distance that the coarse aggregate can roll. The second drop of mix should be made as close to the tailgate on the truck bed as possible, also to reduce the distance that the coarse aggregate can roll. The remaining weight of the mix should be split, probably into three
additional equal portions, and placed throughout the center portion of the length of the truck bed. The key to eliminating the truckload to truckload segregation problem is to keep the first portion of the mix delivered from the truck bed into the paver hopper from being segregated and to also keep the last portion of the mix delivered from the truck bed into the paver hopper from being segregated.

SUMMARY OF TRUCKLOAD TO TRUCKLOAD SEGREGATION

Truckload to truckload segregation is caused by the manner in which the haul truck is loaded. If the truck bed is loaded in one drop of mix and a conical pile is formed inside the bed, the largest aggregate particles in the mix will roll downhill and collect at the front of the bed, on the sides of the bed, and at the tailgate on the truck bed.

Truckload to truckload segregation can be eliminated by merely loading the haul truck correctly. One drop of mix should be deposited from the surge silo as close to the front bulkhead on the truck bed as possible. The truck driver should then pull the haul truck forward and the next drop of mix deposited as close to the tailgate on the truck bed as possible. The truck should then be backed up and additional drops of mix placed between the first and second amounts of mix. By loading the truck using the proper multiple-drop procedure, the distance that the coarse aggregate particles in the mix travel will be greatly reduced and segregation of the mix will be prevented.

“Segregation: Causes and Cures,” Part 2 in the next issue of Ohio Asphalt will discuss the other operational issues that can affect truckload-to-truckload segregation, including the unloading of the haul trucks and the operation of the paver.

Copyright 2004, James A. Scherocman
This is the annual convention for the asphalt paving industry in Ohio, and there is something for everyone. In addition to the usual fine program of General Sessions and the Trade and Equipment Show, this year’s meeting will feature three concurrent seminars on Plant Operation and Maintenance, Compaction and the Design of Porous Asphalt Pavements. Watch for the detailed program in the mail and register for the Annual Meeting at:

www.flexiblepavements.org
or
call 888.4HOTMIX

Come join the rest of the Ohio asphalt paving industry at the Flexible Pavements of Ohio, 43rd Annual Meeting and Equipment Exhibition in Columbus, March 30-31.
A new pocket-sized, weatherproof version of the *Guidelines for Traffic Control in Work Zones* is now available to provide Ohio workers with a convenient and compact resource while on the job site. The 53-page field guide is a scaled-down version of the 228-page, letter-sized manual.

The guide, developed by the Office of Traffic Engineering, contains the drawings from Chapter Six of the *Ohio Manual of Uniform Traffic Control Devices*, which directs workers on the correct placement of signs and other traffic control devices in work zones.

According to Ken Linger, ODOT Maintenance of Traffic engineer, the guide has been in the works for five years. “We saw Virginia’s version in 1999 and liked it, but we decided to wait until the federal *Manual of Uniform Traffic Control Devices (MUTCD), Millennium Edition* was released before we printed our field guide, so it would have the most current information.”

Now that the pocket manual is available, workers can keep the guide in their pockets or glove boxes for quick reference.

The manual is available from ODOT at a cost of $3 per copy. Contact the ODOT Office of Contracts at 1-800 459-3778 to purchase a copy.

For more information, contact Mack Braxton, ODOT, Office of Traffic Engineering, 614-752-8829, or e-mail: Mack.Braxton@dot.state.oh.us

(The above information was adapted with permission from an article that appeared in the ODOT internal newsletter)
Perpetual Pavement Demonstration

PROJECT UNDER CONSTRUCTION

The Shelly & Sands paving crew places and compacts fatigue-resistant base on the ODOT Perpetual Pavement Demonstration project. (Photo courtesy of ODOT)
Remarkably last fall, in the first season of construction of ODOT’s perpetual pavement demonstration project on U.S. 30, Shelly & Sands already began placing the first layers of perpetual asphalt pavement.

The Zanesville-based company placed about 5,000 tons of fatigue-resistant and 302-base westbound on U.S. 30 near the east end of the project, between existing Route 30 and Swinehart Road. The project, which was featured in the spring 2004 issue of Ohio Asphalt, (Wayne, US 30, 11.86/16.14, Project 44 (2004)) is a four-lane divided highway relocation beginning east of Wooster at the interchange with S.R. 83 and extends east to Kansas Road, near S.R. 57.

The perpetual pavement design calls for a four-inch-thick layer of fatigue-resistant base as the first asphalt concrete course. Project specifications required that material to be a 302-base gradation designed for 3 percent air voids. Shelly & Sands’ mix design resulted in a mix with approximately .8 percent-higher asphalt content in the fatigue-resistant base than typical for a 302-base mix.

Unlike standard ODOT base specifications, this perpetual pavement demonstration project includes stringent density requirements for the fatigue resistant base and 302-base courses. The target density for the base materials is 94 percent of theoretical maximum density (TMD) and the minimum acceptable compacted density is at least 92 percent TMD. Density was checked by cutting and testing five cores per day. Ed Morrison of Shelly & Sands reported that the company had no difficulty achieving the required density.

As pavement construction progresses in 2005, the project will be extensively instrumented and tested for three ODOT research contracts by Ohio University. The first project is titled “Determination of Mechanical Properties of Materials used in the WAY-30 Test Pavements.” OU will perform sampling and testing to determine the relationship between the material’s coefficients assumed for pavement design against those actually achieved in the project construction.

The second research project, titled “Instrumentation of the WAY-30 Test Pavements” is for placing instruments in the test pavements during construction to measure the pavement response to load and environmental conditions. A load test of the pavements is to be conducted as part of this project.

The final research project is “Validation of the Design Procedures used for the WAY-30 Test Pavements.” The tasks of this project include monitoring the construction to determine the effect of the required specification enhancements on the project and to compare, using the data from the first two projects, the actual field pavement response to that predicted by the design methodology.

The asphalt pavement industry is looking to this project’s evaluation to validate the Perpetual Pavement concept and calibrate the design methods for Ohio materials. With this rapid progress on the construction, it is hoped that there will be early results from the evaluation. Ohio Asphalt will continue to monitor the demonstration project and report results as they become available.
Preventive Maintenance (PM) has been getting a lot of attention these days, which is understandable given the strong desire for agencies to stretch limited financial resources.

Promoters of preventive maintenance say treating pavements at the earliest signs of distress can retard pavement deterioration. This results in the retention of high levels of serviceability to the highway user. The key to success, as it is said, is administering the right treatment at the right time. In the zeal to practice preventive maintenance, a key tenet must never be forgotten; that is, for it to be successful, preventive maintenance must result in extended pavement life, improved serviceability and lower-lifecycle cost. If such is not the case, then the result is nothing less than the squandering of valuable economic resources.

Flexible pavements (i.e., deep-strength or full-depth pavements) on Ohio’s roadways generally exhibit functional distresses only, and have not seen the need for structural repair. Oxidation, cracking and minor raveling or rutting are typical distresses found on aging asphalt pavements. Past practice has been to crack seal as the need arises and to restore the riding surface in about 15-year intervals by overlaying the pavement with a lift of hot mix asphalt. Of course, cases have arisen where rapid deterioration of the wearing course deemed a mid-interval treatment necessary. Under a preventive maintenance scenario the question needs to be asked how this past performance can be improved upon.

To improve on the performance of existing pavement maintenance strategies, the applied PM treatments must extend planned treatments further out in the timeline of a pavement’s life. For instance, if the past pavement maintenance strategy was to seal cracks and overlay the pavement after 15 years of use, the application of a PM surface treatment prior to year 15 should move the need for the overlay beyond year 15 to say year 19 or 21. If such is not the case, or if the treatment only delays the overlay by a year or two, then it is warranted to ask the question, “What value did the treatment provide?” Here’s an illustration of this point. A new flexible pavement receives a PM surface treatment in the eighth year. The average life for the treatment is five to eight years. By the end of the treatment’s usable life, the pavement age will have reached anywhere from 13 to 16 years. At this time an overlay would be anticipated. If traditional maintenance practices were to overlay in year 15 anyway, then there is room to question if applying the surface treatment was a good investment.

It is possible that a PM treatment, although it did not result in a delay in the timing of future overlays, can provide value. That value being improved serviceability. Serviceability is a measure of how well the pavement serves the user. Consequently, riding
comfort is the dominant characteristic in its determination. The value associated with serviceability is difficult to quantify as it is a subjective measure. To associate a monetary value with an increase or decrease in serviceability will involve many costs; for instance, travel time, cartage damage, fuel economy, etc. Historically, Ohio’s flexible pavements retain rather high levels of serviceability even though pavement condition ratings may decrease. This indicates that the distresses typical of flexible pavements in Ohio (i.e., oxidation, minor raveling and rutting, cracking, etc.) do not have a significant impact on ride quality. If they did, then serviceability ratings would fall off similarly to pavement condition ratings. So, the selection of a PM treatment, if it does not improve the lifecycle cost over that of traditional maintenance methods, must make an appreciable improvement to the pavement serviceability to justify its use.

How then does a person test if their PM strategy makes good “cents”? The best way to accomplish this is to perform a cost analysis, evaluating the PM strategy vs. traditional maintenance practices. The PM strategy makes good “cents” if it results in lower lifecycle cost when compared to the cost of traditional maintenance strategies. As mentioned earlier, this reduction in lifecycle cost comes from delaying those pavement distresses that result in more costly pavement repairs. Savings to the agency and user that is realized from pavements being maintained in good serviceable condition also factors into the cost analysis; but as mentioned earlier these are difficult to assess. By using historical performance of various treatments a timeline can be developed for the PM strategy and the traditional maintenance schedule. Use accepted lifecycle-costing methods such as net present value (NPV) or equivalent uniform annual cost (EUAC), discounting the cost of treatments to account for the time value of money. With these tools the alternative with the least cost can readily be determined.

As we think about preventive maintenance we must be mindful of its ultimate goal. That is, to provide extended pavement life in good serviceable condition resulting in the lowest lifecycle cost achievable. It only makes cents!!
In summer 2004, the John R. Jurgensen Company conducted a demonstration for ODOT at the Interstate 71 pavement replacement and widening project in Fayette County, to show potential alternatives for the re-use of concrete pavement.

The project plans call for removal and disposal of the existing concrete pavement and replacement with deep-strength asphalt. Disposal of the old concrete pavement in landfills is difficult and expensive, so a beneficial method to re-use the concrete was sought. Jurgensen proposed an on-site crushing operation as an alternative to conventional rubblization methods that re-use the broken concrete as part of the new flexible pavement system, and which would still allow improvement of the sub-grade where necessary.

However, ODOT has prohibited the re-use of crushed concrete as aggregate base because of concern about the alkaline fines leaching out through the under-drain systems and polluting streams. The Jurgensen Co. proposed crushing the concrete onsite, screening off the minus-1/2-inch-sized material, so as to eliminate that problem, and replacing the crushed material as an aggregate sub-base.

A control section was constructed where the fines were left in the material. ODOT will monitor the under-drain run-off to evaluate the difference in leaching potential between the material with and without the fines.

Success with the experiment could lead to:
- An alternative to conventional rubblization that would allow improvement of poor sub-grade where necessary
- A means of re-using rather than wasting old concrete pavement

Not only would this be better for the environment, but more economical as well.
With the 109th Congress beginning work in 2005, passage of a new six-year transportation funding bill will be a high priority, for them and for us. Nothing is more important than this to our industry, the nation’s transportation system, or the nation’s economy.

Let us review what has transpired in the 17 months since the last six-year transportation act, TEA 21, expired Sept. 30, 2003 (yes, 2003, not a misprint). Three-way negotiations between the House, Senate and the Bush Administration on the total amount of the new act failed to reach agreement. The Bush Administration proposed SAFTEA at $256 billion and repeatedly threatened to veto anything higher. The Senate passed its version of SAFTEA funded at $318 billion and the House of Representatives passed a bill, TEA-LU, funded at $284 billion. Conferees failed to reconcile a series of offers ranging from the $318 billion Senate-passed level to a $299 billion level presented by House conferees. In the meanwhile, Congress passed six temporary extensions that have continued prior law and funding levels until May 31, 2005. To learn the details of differences between the House and Senate passed bills and the Administration’s position go to http://www.fhwa.dot.gov/reauthorization/

Because these old bills do not carryover from one Congress to the next, new transportation reauthorization bills will have to be submitted and passed in the House and Senate, reconciled and sent to the president for signature, all, hopefully, before the May 31, 2005 expiration date of the current temporary extension. Leadership of the House Transportation and Infrastructure Committee (T&I) and the Senate Environment and Public Works Committee (EPW) is expected to remain the same with Rep. Don Young (R-AK) and Sen. James Inhofe (R-OK), respectively. There has been solid support in the Senate for its $318-billion funding level. Rep. Young’s committee had originally proposed an even higher level of funding for transportation, ($375 billion), the House, though, had whittled that to $284 billion in an attempt to compromise with the Administration.

The $318-billion funding level is what is needed to stop the deterioration in the capacity of the nation’s transportation system. Without that level of funding, congestion will continue to increase or the infrastructure will be allowed to deteriorate, or both. Either alternative will damage the nation’s economy in the long term. It is imperative we all continue to communicate to our representatives, senators and president the importance of enacting a six-year transportation reauthorization of at least $318 billion.

If you need to find out how to contact your elected representatives, go to http://www.flexiblepavements.org/contactofficials.cfm for a link to their websites and e-mail addresses.
JC EQUIPMENT RECEIVES ‘TOP’ HONORS

JC Equipment Sales & Leasing Inc. recently received three awards at the Topcon Positioning System’s Annual Dealer Meeting. The Cincinnati-based company was honored with the Top Ten Dealership and Top Five Market Penetration awards for construction products and received the Topcon Outstanding Performance (T.O.P.) Award in recognition of outstanding dedication and service.

JC Equipment Sales & Leasing is the leading provider in lasers, machine-control and GPS-guidance systems in the Tri-state marketing area of Topcon Positioning Systems. For more information, contact: JC Equipment Sales and Leasing, Inc., Jeff Combs, president, 2300 E. Kemper Rd, Suite 11A, Cincinnati, Ohio, 45241-2, or call 513-772-7612.

Be sure to visit JC Equipment Sales & Leasing’s exhibit at the Flexible Pavements of Ohio Annual Meeting and Equipment Exhibition, March 30-31, 2005, at The Midwest Hotel and Conference Center, 4900 Sinclair Road, Columbus.
The Wirtgen Group delivers it all with QUALITY and SERVICE that outlasts the competition.
PAVING THE WAY TO THE FUTURE

Ohio’s Dependable Dealer

With over 50 years of experience in the heavy construction equipment business, you can rely on Columbus Equipment Company to provide the experience and the equipment you need to get the job done. From demolition to earthmoving, grading or roadbuilding, we’ve gotcha covered.

Stop in and see us today!