Perpetual Pavement Moves Forward

Also in this Issue:

HMA Segregation:
Causes & Cures, Part 3

FPO Members Lobby Congress for Federal Transportation Reauthorization
SMP™
High Performance Cold Mix
You Can Permanently Repair this Pot Hole

For Your Cold Mix Needs, Contact Our SMP Producer Distributors

H.P. Streicher, Inc.
Kurt Smith
Toledo, Ohio
(419) 841-4715

Holmes Supply Corp.
Andrew Jones
Holmesville, OH
(330) 279-9000

J. & J. Asphalt, LLC
James Lytle
Lodi, Ohio
(330) 262-4936

Barrett Paving Materials, Inc.
Jeffrey Lamb
Dayton, OH
(937) 279-3200

To Become an SMP Producer Contact Hugh Chapman
(708) 396-1100

Manufactured by Seneca Petroleum Co., Inc.
Crestwood, IL
(708) 396-1100
Toledo, OH
(419) 691-3581
The first fatigue-resistant and structural-base layers of ODOT’s perpetual pavement demonstration project are being constructed on the U.S. Route 30 Wooster Bypass in Wayne County. See page 4 to find out more about the project and how you can follow its construction.
Perpetual Pavement
Moves Forward,
Locals Get On Board

The summer’s construction season is in high gear and progress is starting to show on the perpetual pavement being constructed by the Ohio Department of Transportation (ODOT) as part of the U.S. Route 30 Wooster bypass in Wayne County. Work is progressing from east to west, as most of the earthwork has been completed, aggregate base is being placed and paving of the base layers has started.

This project is being fully instrumented by Ohio University in order to validate the perpetual pavement concept. Two separate locations will be instrumented. The eastern location has the deflection measuring devices and sub-grade pressure cells installed and is awaiting placement of strain gauges which will be located in the various asphalt layers. In addition, a complete on-site weather station, which is nearly completed, and a weigh-in-motion scale will be built at the same location. You can see additional details and photos of the project by going to our website at www.flexiblepavements.org and clicking on the Perpetual Pavement page.

Similar perpetual pavement and monitoring projects are being constructed around the country. In Kansas on July 7 and 8, an open house and workshop were held for the U.S. 75 perpetual pavement being constructed by the Kansas Department of Transportation. This project is being fully instrumented by Kansas State University and contains four different pavement buildups. The New York Department of Transportation will also be building and instrumenting a perpetual pavement that is to be constructed on top of a rubblized concrete pavement. In addition, a new pavement on a new alignment will be constructed and instrumented.

State DOTs are not the only ones moving forward with perpetual pavements.

This year the City of Cincinnati will be letting to contract a project for the complete removal of North Bend Road between Hamilton Road and Colerain Avenue and replacing it with a new perpetual pavement. FPO provided the thickness design and material buildup for the project. The asphalt industry now has software available to facilitate the mechanistic-empirical design required for perpetual pavements.

The Cuyahoga County Engineer has two projects under design that will be built as perpetual pavements. The first of these is Cedar Road from Brainard Road to Tolander Road and the second is Brainard Road from the Pepper Pike south corporation line to Shaker Road. Perpetual pavements are well suited for urban locations because additional pavement structure will not be required in the future, eliminating curb reveal problems.

Ohio will be the site for an International Conference on perpetual pavements in the late-summer or early-fall of 2006. This conference will provide a forum for engineers and agencies from across the country and around the globe to share their experiences, research, and data relative to perpetual pavements. It will provide a great opportunity for those of us in Ohio to attend and obtain a wealth of information as we refine our own perpetual pavement design.

Perpetual pavement will undoubtedly be the roadway of the future. I personally feel very fortunate to be part of the industry at such an exciting time.
RAP fines can have up to twice as much AC content as 1/2x1/4 and more than four times as 3/4x1/2. So, feeding RAP out of one bin makes it virtually impossible to hold spec, especially with Superpave. Now, with a Fold’n Go mobile screening plant, you can consistantly fractionate RAP at high tonnages the same as you do your virgin aggregate.

IF you run more than one HMA plant, the Fold’n Go is quickly and easily moved to handle RAP fractionating at each plant. This heavy-duty mobile screen plant is totally self-contained with three on-board stacking conveyers and sets up in just 15 minutes. RAP replaces expensive virgin ingredients pound for pound and without loss of mix quality. Start realizing serious material savings with your investment in a Fold’n Go mobile screening plant and call Cantwell Machinery Co.
INTRODUCTION:

Segregation in a Hot Mix Asphalt (HMA) mixture can be defined as the separation of the coarse aggregate particles from the rest of the mix. The segregation can take one of three forms – random, side to side or longitudinal, and truckload to truckload. Each type of segregation is caused by a different problem or problems, and each type of segregation affects the long-term durability of the asphalt concrete pavement structure.

Segregated areas in the surface of the pavement have a rougher texture than the surrounding pavement area. In addition, the density of the mix is much lower in the segregated locations compared to the density of the HMA mix in non-segregated areas. Pavement deterioration of the segregated areas in the form of raveling typically occurs quickly under traffic. With more time and with traffic loading, the raveled areas can increase in both size and depth, with a pothole forming in the pavement surface. With additional time and traffic, it is possible for the raveling to progress completely through the pavement layer.

Parts 1 and 2 of this three-part article (which appeared in the Winter 2005 and Spring 2005 issues of OHIO ASPHALT) discussed the problem of truckload-to-truckload segregation. This third article will briefly describe the various causes for each of two other types of segregation, random and side-to-side segregation. In addition, it will describe the most efficient means to prevent each of these types of segregation.
RANDOM SEGREGATION:

Areas of random segregation, shown in Figure 14, occur at irregular intervals in the surface of the roadway. These locations are indeed random, both transversely and longitudinally. In general, there is no consistent pattern to the occurrence of the segregated areas.

Random segregation is primarily caused by the handling of the coarse aggregate materials as they are stockpiled and then fed into the asphalt plant. If a stockpile of coarse aggregate is built using a conveyor and a conical pile is formed, the largest aggregate particles typically roll down the sides of the pile and collect at the bottom. This is illustrated in Figure 15. If the operator of the front-end loader at the asphalt plant picks up a bucket-full of the aggregate from the bottom of the pile and delivers the large aggregate particles into the cold-feed bins at the plant, random segregation may occur on the roadway behind the paver, depending on the type of asphalt plant being used.

If a batch plant is employed to produce the asphalt concrete mix, the use of screens and hot bins at the top of the plant tower will normally partially re-blend the segregated coarse aggregate. In addition, the mixing of the different size aggregates and the asphalt cement binder in the plant pugmill will also aid in re-blending the segregated large, coarse aggregate particles. If the front-end loader operator fills the cold-feed bins with several consecutive bucket loads of large aggregate pieces from the bottom of the stockpile, random segregation may still occur on the roadway even when a batch plant is used to manufacture the HMA mix.

If a parallel-flow drum mix plant is used to produce the mix, there is a significantly greater chance to obtain random segregation on the roadway if only large aggregate particles are delivered into the cold-feed bins by the front-end loader operator. Remixing of the aggregate particles in a parallel-flow drum mix plant is limited before the asphalt cement binder material is added to the coarse and fine aggregates. It is often said this type of plant operates on a segregated-in, segregated-
out principle. If segregated large-aggregate particles are in the cold-feed bin, segregated mix will come out of the discharge chute of the plant.

If the HMA mix is manufactured in a counter-flow drum mix plant, there is a greater opportunity for the large coarse-aggregate particles to be re-blended inside the aggregate drying portion of the length of the drum. This is because the asphalt binder material is not added to the combined coarse and fine aggregates until the aggregates reach the rear-mixing portion of the length of the drum. Although not as efficient in remixing the large-aggregate particles as the pugmill on the batch plant, the amount of random segregation that may be produced through a counter-flow drum mix plant is usually much less than the amount of random segregation that may be produced when the HMA mix is manufactured in a parallel-flow drum mix plant.

Once the segregated mix is produced in the plant it is very difficult, if not impossible, to remix the segregated material during the temporary storage, loading, hauling, unloading or paving processes. Thus the solution to a random-segregation problem is found in the proper management of the coarse-aggregate stockpiles at the asphalt plant.

If conical aggregate stockpiles are used, the front-end loader operator must be aware that the largest aggregate particles within each coarse-aggregate stockpile will roll down to the bottom of the pile. The loader operator then needs to do two things: rework the pile, re-blending the large-aggregate pieces at the bottom of the pile with the rest of the aggregate; and fill the loader bucket with non-segregated aggregate taken from the pile several feet above the ground level. It is obviously very important to consistently put uniformly graded coarse aggregate into the cold-feed bins on any type of asphalt plant. In general, however, random segregation is not a major problem on most asphalt paving projects.

SIDE-TO-SIDE OR LONGITUDINAL SEGREGATION:

Side-to-side or longitudinal segregation shows up on the paved surface as a very rough texture on only one side of the paver. This is illustrated in Figure 16. This type of segregation is not caused by the mismanagement of the coarse-aggregate stockpiles, or by the loading of the aggregate into the cold-feed bins, or by the passage of the aggregate through the plant. Further, this type of segregation is not caused by the discharge of the mix from a parallel-flow or a counter-flow drum mix plant, or the discharge of the mix from the pugmill from a batch plant.

FIGURE 16

FIGURE 17
Causes & Cures

In order for the segregated-coarse aggregate material to end up on only one side of the paving lane, the asphalt concrete mix must roll downhill. The largest aggregate particles will separate from the rest of the mix, similar to what happens in a conical aggregate stockpile. This process can occur when the HMA mix is delivered into a surge silo from a drag slat conveyor, a bucket elevator or from a conveyor belt.

When the mix is carried to the top of the silo it must be placed into the center, as shown in Figure 17. Although a conical shaped pile of mix may build up inside the silo, the largest aggregate particles in the mix should roll downhill relatively equally all the way around the pile. As the silo is emptied, the coarse material will get mixed back into the remainder of the mix and longitudinal segregation will not occur.

Depending on the configuration of the silo and the type of conveying device employed, it is possible for the mix to be delivered into the top of the silo “off-center.” If this is the case, the pile of mix inside the silo will be higher on one side of the silo than on the other side of the silo. The higher side will be against the wall farthest from the discharge point of the mix from the conveying device. This provides the opportunity for the largest aggregate particles in the mix to roll downhill and collect at the side of the silo that is closest to the conveyor. These large aggregate particles will then be drawn down and through the silo and discharged into one side of the haul truck.

Side-to-side or longitudinal segregation can occur at the top of the silo even when a batcher is used to collect the mix coming up the conveying device and discharge the mix in a mass into the silo. If the mix delivered into the batcher is not placed into the center of the batcher, as illustrated in Figure 18, the largest aggregate particles in the HMA mix will roll to one side of the batcher. When the batcher is emptied, the segregated mix will be deposited on one side of the silo. This will result in side-to-side segregation of the mix behind the paver.

Longitudinal segregation can also occur when mix is delivered “off-center” from a transfer conveyor running horizontally across the top of several silos. If the mix is pushed off the side of the conveyor, the largest aggregate particles in the mix can again be thrown against the far side of the silo. This, again, results in the largest aggregate particles running downhill to the near side of the silo. When the mix is discharged from the silo into the haul truck, the segregated material will be deposited on one side of the truck bed.
If the largest aggregate particles end up on one side of the haul truck they will be discharged into the paver hopper on the same side. The segregated material will then pass through the paver on that side and come out under the screed on the same side. Side-to-side segregation is caused by how (where) the asphalt concrete mix is delivered into the top of the silo. In general, however, side to side or longitudinal segregation is not a major problem on most asphalt paving projects.

SUMMARY:

Parts 1 and 2 of this series discussed the causes and cures of truckload-to-truckload segregation.

Truckload-to-truckload segregation is caused by the manner in which the haul truck is loaded. If the truck bed is loaded in one drop of mix and a conical pile is formed inside the bed, the largest aggregate particles in the mix will roll downhill and collect at the front of the bed, on the sides of the bed, and at the tailgate on the truck bed.

Truckload-to-truckload segregation can be eliminated by merely loading the haul truck correctly. One drop of mix should be deposited from the surge silo as close to the front bulkhead on the truck bed as possible. The truck driver should then pull the haul truck forward and the next drop of mix deposited as close to the tailgate on the truck bed as possible. The truck should then be backed up and additional drops of mix placed between the first and second amounts of mix. By loading the truck using the proper multiple-drop procedure, the distance that the coarse aggregate particles in the mix will roll will be greatly reduced and segregation of the mix will be prevented.

In addition to loading the haul truck correctly, keeping the paver hopper half full between truckloads of mix, practicing rapid stop-rapid start paver operations, and using fillets or cutoff plates in the corners of the paver hopper to eliminate the need to raise or fold the wings, will be very beneficial in reducing any amount of segregation that may have occurred during the truck-loading process.

In Part 3 of this series, two less prevalent types of segregation, random and side-to-side segregation were discussed. The solution to a random segregation problem is found in the proper management of the coarse aggregate stockpiles at the asphalt plant. Side-to-side segregation must be solved through mechanical adjustments to the HMA plant. In either case the key to eliminating the segregation is recognizing its pattern on the roadway, investigating and curing its causes at the production facility.

Copyright 2004, James A. Scherocman
Producing quality Asphalt Products including Asphalt Cements, Modified Asphalt Cements & Asphalt Emulsions

Oregon, Ohio
(419) 693-0626
- SHRP, PG Graded Asphalt Cement
- Polymerized Asphalt Cement
- Multigrade Asphalt Cement
- Asphalt Emulsions

Marietta, Ohio
(740) 374-5100
- Asphalt Cement
- Cutback Asphalt Cement
- Asphalt Emulsions

Marion, Ohio
(740) 387-0776
- Asphalt Emulsions
- Slurry & Micro Surfacing Emulsions

“We are your Source for Specialty Asphalt Products”
In a case with potentially far-reaching ramifications within the State of Ohio and beyond, a city in Summit County has been determined to be liable for a disappointed bidder’s lost profits. The city awarded a contract to a bidder that was ultimately determined by a jury to have been someone other than the “lowest and best bidder,” and the jury awarded bid preparation costs as damages. The Court of Appeals reversed the trial court’s decision limiting the contractor’s recovery to bid preparation costs, and ruled that the contractor be entitled to lost profits on the contract that should have been awarded to the disappointed bidder.

Traditionally, courts in Ohio have either enjoined the award to one other than the lowest responsive and responsible (or lowest and best) bidder, leaving the owner the ability to re-bid and avoid any direct economic loss, or in the alternative, in cases where the bidding irregularity is proven later, courts have awarded some nominal damages such as the cost of preparation of a bid. However, this may very well be the first case in Ohio that has awarded lost profits, meaning that public authorities who award contracts to someone who should not have been awarded the contract may be faced with “paying twice” for the work in the form of lost-profit damages.

In the case of Cementech v. Fairlawn, 2005 Ohio 1709, the Summit County Court of Appeals stated “we find that injunctive relief does not preclude monetary damages because such preclusion would leave companies like Cementech with no real relief and allow government entities to go unpunished for ignoring Ohio and municipal laws.” The Court went on to state:

“This Court recognizes that we are setting a precedent, but we find that our decision is necessary to protect the integrity of the bidding process and to ensure that government entities take responsibility for their actions and follow proper procedures and laws, thus properly representing their constituents.”

In view of this case, contractors will be encouraged to initiate litigation and recover lost profits when they believe they have been wrongfully denied a contract, and public owners will approach tough bidding decisions with greater trepidation than before, knowing that the wrong decision may cost them dearly.

This case is currently being appealed by the city to the Ohio Supreme Court. If the Ohio Supreme Court decides to exercise its jurisdiction and hear the case, this may not be the final word on this important issue.
The Ohio Department of Transportation (ODOT) was a recent recipient of the 2004 Asphalt Pavement Alliance (APA) Perpetual Pavement Award.

American Association of State Highway and Transportation Officials (AASHTO) President Jack Lettiere, along with APA Co-chairman Larry O’Donnell, presented the honor to ODOT District 2 Production Administrator Aaron Behrman at the awards ceremony held May 18 at the National Center for Asphalt Technology on the campus of Auburn University in Auburn, Ala.

The Perpetual Pavement Award was presented in recognition of the performance of a 5-mile section of southbound State Route 25 near Toledo. This asphalt pavement project was constructed 67 years ago, when existing U.S. Route 25 was widened to four lanes by adding the award-winning southbound lanes. Though it was one of Ohio’s first Full-Depth Asphalt Pavement projects, it has received only maintenance overlays at an average of 13-year intervals.

The award-winning project is located in Wood County from about one-third of a mile north of S.R. 582 and extends north approximately five miles. The original pavement construction, built as two projects in 1937 (2.98 miles) and 1940 (2.10 miles), consisted of 8.5-inches of hot-mix asphalt on 1.75 inches of B-11 insulation course (#7 screenings). The pavement build-up was as follows:

- 1 inch of T-50 Hot-Mixed, Hot-Laid Asphaltic Concrete Surface Course (#9’s and sand) on
- 1.50 inches of T-50 Hot-Mixed, Hot-Laid Asphaltic Concrete Binder course (#4’s and sand) on
- 6.0 inches of B-50, Hot-Mixed, Hot-Laid Asphaltic Concrete Base Course (#3’s, #4’s and sand) on
- 1.75 inches of B-11, Insulation Course (#7 screenings) on the subgrade.
Interestingly, the original full-depth hot-mix pavement was constructed between side forms in a manner more familiar to the construction of portland cement concrete pavements.

This project was one of several early Full-Depth Asphalt Pavements documented in a 1978 National Asphalt Pavement Association report, *Early Full Depth Hot-Mix Asphalt Pavement Construction in Ohio*, QIP 100, authored by James Scherocman, Don Barber and William Baker. The following is a quote from that report:

“The Wood County –US25 projects were constructed on the same stretch of Highway as part of two different contracts. The early pavement lanes (northbound) were part of a plank road originally built in the 1830’s. When the new Full Depth hot-mix asphalt southbound lanes were built in 1937 and 1940, no work was done on the northbound lanes. In 1948, however, a hot-mix asphalt overlay, 2-1/4 inches in thickness, was placed over all the pavement lanes, both northbound and southbound. Thus the initial overlay was placed on the 1937 project after only 11 years of service and the 1940 project only after 8 years. Importantly, the next resurfacing was not constructed until 1965 – 17 years later – when only a one-inch overlay was placed.”

The maintenance performed on the project over the last 67 years is as follows;

- First overlay (1948) - 2 1/4 ” HMA
- Second overlay (1965) - 1” HMA
- Third overlay (1983) - 1.5” HMA
- Fourth overlay (1990) - 1.5” HMA

This project has carried heavy traffic, as prior to the construction of nearby Interstate 75 in 1959, U.S. 25 was the major north-south route through Ohio. The Traffic loading on the project has been as follows:

- Prior to the building of I-75 in 1959 this pavement registered around 11,000 Average Daily Traffic (ADT), with 13 percent trucks
- After the Interstate was built (1959), this pavement registered 3,500 ADT with 4 percent trucks
- In 2000, the pavement registered 11,000 ADT with 4 percent trucks

Although this project may have been considered an experiment when built, it has withstood the test of time and traffic and performed in a manner exemplary of the term “Perpetual Pavement.” Congratulations to ODOT and all the individuals involved with the design, construction and maintenance of this 2004 Perpetual Pavement Award winning project.
FPO Members Lobby Congress for Federal Transportation Reauthorization

A Flexible Pavements of Ohio delegation of six joined the Transportation Coalition Fly-in to Washington, D.C. on April 26 and 27, 2005, to lobby the U.S. Congress for a transportation reauthorization bill that is equitable to Ohio. Other Ohio industry associations and their members participated as well.

As of early July, a House and Senate Conference Committee is continuing negotiations over the amount and provisions of the Transportation Reauthorization bills. Sen. Voinovich and Rep. LaTourette serve on the joint House/Senate conference committee, which is attempting to resolve differences in the bills passed in the House and Senate before Congress’ July 4th recess. The total amount keeps coming down. Senate conferees previously proposed a compromise amount of $290 billion. Speculation is that a final compromise on a total amount of $286.5 billion has been reached, but another extension may be needed before final details are worked out. The Bush Administration continues to threaten to veto any law which exceeds $284 billion over six years. Congress previously approved an eighth temporary extension of the federal transportation bill to July 19, 2005.

Only the Senate’s bill addresses Ohio’s issues of obtaining a more equitable rate of return on its transportation revenues obtained from the federal portion of the gas tax. Under the Senate’s bill Ohio’s share would be 91 percent increasing to 92 percent by 2009, with at least 92 percent of the funding directed to the core programs and a total funding of $295 billion.

You are urged to continue to show your support for Sen. Voinovich and Rep. LaTourette as they attempt to obtain a fairer share for Ohio.
As reported in the article by William Brayshaw, Hamilton County engineer, in the Spring 2005 Issue of OHIO ASPHALT; the State Capital Improvement Program (SCIP), which uses bond funds supported by state general revenues to finance local road and infrastructure improvements, is due to expire in 2006 unless a renewal is approved by Ohio voters. If the program is to be continued, a new constitutional amendment will have to be placed on the ballot in the November general election and approved by the state’s voters.

Unfortunately, as of this writing, partisan politics has prevented authorizing the resolution to place the issue on the ballot. Although generally all legislators favor continuing SCIP, most Republicans are intent on combining the SCIP Bond Issue with the Governor’s Third Frontier Plan; Democrats are generally opposed to combining the proposals. The General Assembly must complete action by Aug. 10 in order to get the bond issue proposal on the November statewide election ballot. However, Lawmakers were scheduled to begin a three-month summer break at the end of June.

For the last 20 years this program has provided approximately $120 million a year for infrastructure repair and improvements. Please continue to tell your state representatives about the importance of continuing this important program.
An Ohio University student team has won the 2005 National Hot-Mix Asphalt (HMA) Mixture Competition, triumphing over defending-champion Michigan Tech. The Ohio University team consisted of Yun Liao, Jonathan Kovach and Brett Mann. Their faculty advisor is Dr. Sang-Soo Kim.

Flexible Pavements of Ohio sponsors an asphalt mixture performance competition for Ohio’s Civil Engineering colleges. In this competition, student teams have to design an HMA mixture to resist rutting. Teams are supplied the same aggregates (courtesy of Martin Marietta Aggregates) and may use any combination of binder and additives. Teams have to perform the laboratory mix-design tests, using a university or FPO member lab, write a report and give an oral presentation.

Mixes are tested for rut depth at the ODOT laboratory, and reports and presentations are judged by a panel of industry experts. The competition requires a great deal of extra effort on the part of students and faculty advisors; and, of course, wouldn’t be possible without the cooperation of many FPO producer members and their laboratory personnel.

Ohio University won the state competition over second-place Ohio Northern University and third-place Youngstown State University to advance against Michigan Tech, which won the Wisconsin competition, in the national competition. The national competition was judged by Dr. Ray Brown at the National Center for Asphalt Technology at Auburn University.

OU won the national competition in a close 93 to 91 decision over Michigan Tech. The submissions were evaluated numerically with 35 points awarded for the written report; 10 points for cost-effective analysis; 30 points for video; and 25 points for rut-testing results.

Congratulations to the national champions, Ohio University.
SemGroup L.P.,
Acquires Koch Pavement Solutions

SemGroup, L.P. announced May 31, 2005, the completion of its acquisition from Koch Materials Company of asphalt operations and assets located in the United States and Mexico. SemGroup said the U.S. assets will operate as SemMaterials, L.P.

The acquisition includes 47 asphalt terminals in 24 states and 13 asphalt terminals in Mexico; five regional technical centers; 65 worldwide patents and 10 pending patents. Frank Panzer has been named SemMaterials president and chief operating officer. Panzer previously served as SemGroup’s director – commercial development and led the company’s acquisition team. He joined SemGroup in 2001 and has 30 years of energy and business experience.

SemMaterials, L.P. is represented in Ohio by Chip Ray, PE, 614-856-3989

If you are an FPO member and have news about your business or company regarding in-state staff changes or honors, and would like it to appear in Ohio Asphalt magazine, you can send the information by fax, at 614-846-8763; e-mail, at editorial@triad-inc.com; or call 800-288-7423.

Advertisers Index

Asphalt Materials 11
Cantwell Machinery 5
Highway Rubber Products 18
Ohio Cat IBC
Protection Services 11
Seneca Petroleum IFC
Southeastern Equipment 5
The McLean Company BC
The Shelly Company 11
Setting industry standards for speed, strength and profitability.

Ohio Cat offers a full line of asphalt paving equipment that ranges from specifically designed compaction products to quick, smooth riding pavers. Our equipment is proven in the industry to be the best value for durability and dependability.

- Asphalt, Soil, Vibratory and Pneumatic Compactors
- Asphalt Pavers
- Soil Stabilizers
- Cold Planers
- Road Reclaimers

When you’re looking for the true long-term value in paving equipment, contact Ohio CAT today and find out about our current purchase, lease or rental options.
The Wirtgen Group delivers it all with QUALITY and SERVICE that outlasts the competition.