The Wirtgen Group delivers it all with **QUALITY** and **SERVICE** that outlasts the competition.
By the time you read this, Ohio’s 2006 election will be over. But as I write it, we still have several weeks to go. Regardless of the outcome, one thing that is certain is that there will be a changing of the guard at the Ohio Department of Transportation (ODOT).

The leadership at ODOT for the past 16 years has been good for Ohio and for the construction industry. For the last decade and a half Ohio has had a stable Highway Construction Program. One reason for this is the professionalism at ODOT, which at least in my opinion, makes it the best run state agency in Ohio. Gordon Proctor, and Jerry Wray before him, has provided the leadership and management necessary to foster this professionalism and the resulting delivery of the Highway Construction Program. As a person who has the opportunity to see what goes on in other states I can tell you Ohio’s DOT stands head and shoulders above most of the others.

The other reason for Ohio’s stable construction program has been a reasonable amount of funding – which brings me to another changing of the guard. Clearly the leader in assuring this stable funding has been Clark Street and the Ohio Contractors Association (OCA). Clark has always been able to anticipate the need for additional revenue before anyone else, and lead the other associations and stakeholders in the effort it took to provide it. At the end of this year, Clark will be retiring as executive director of OCA. This will be another changing of the guard with a major impact on Ohio highway construction just like the changing of the guard at ODOT. Clark has been an institution in the construction industry. Even though I have been at FPO for 15 years, most can tell you that my predecessor was Mr. Bill Baker. But not many, including myself, can tell you the executive director at OCA before Mr. Street.

Before FPO can fulfill its mission of the development, improvement and advancement of quality asphalt pavement construction there has to be pavement construction. In that regard we owe a debt of gratitude to Gordon Proctor, Jerry Wray and Clark Street. The changing of the guard clearly leaves big shoes to fill for the next generation of leadership. FPO stands ready to help and assist this new generation in any way we can.
A RACE AGAINST TIME

By Wayne Brasell & Amy Volz, PE, Kokosing Construction Co., Inc.
The Mid-Ohio Sports Car Course is a permanent road course with both a 2.4-mile, 15-turn configuration and a 2.25-mile, 13-turn layout located in Lexington, Ohio. It was originally constructed in 1962 for weekend sports car racing by local businessmen. In 1972 and 1990, the entire 2.4 miles of road course was resurfaced. The track is often referred to as the “country club” of racetracks. Mid-Ohio Sports Car Course attracts approximately 500,000 spectators, competitors and guests to the facility each year.

As part of Mid-Ohio’s aggressive capital improvements campaign for the 2006 racing season, it was their desire to remove all of the existing concrete patches in the turns that created an inconsistent racing track surface; resurface the entire track; remove and replace existing concrete curbs; and construct two connector roads in the “keyhole” section of the track, which would allow the track to hold two racing events simultaneously.

Kokosing Construction Company, Inc. was approached by Mid-Ohio in September 2005, and after several meetings and design changes entered into a design-build partnership to begin construction on Nov. 6, 2005.

Meeting the Challenges of a Difficult Job

The challenge in constructing the project was the narrow window of opportunity to build it. Mid-Ohio racetrack operates everyday of the week, starting in the first week of April through the first week of November. Kokosing’s main concern was the feasibility of the scope of work involved, due to the tight schedule. The majority of the work was asphalt paving, and the scheduled reconstruction time of the project is normally not conducive in Ohio for asphalt paving; especially with the type of special polymerized asphalt mixes involved.

On Nov 6, 2005, Kokosing began milling the existing 40-foot-wide track (71,000 square yards) and performing pavement repairs. The concrete patches had to be removed (3,250 SY) to allow for a consistent full-depth asphalt pavement section. Throughout the track, numerous areas of unstable base were uncovered and various undercuts were performed (2,050 cubic yards). In areas where the base could not support an undercut, cement stabilization (11,000 SY) had to be performed. Due to the unexpected poor condition of the base, the planned pavement structure had to be modified. The track was divided into eight sections, each with its own unique pavement design. Most of the sections received 3 to 4 inches of 301 asphalt base (12,700 TN). The few sections with sufficient asphalt and aggregate were strengthened with 2 inches of 446-1H asphalt intermediate. The entire track was paved with 1.25 inches of 442 Superpave, 9.5mm asphalt leveling (4,400 TN) and 1.5 inches of 442 Superpave, 9.5mm asphalt surface (5,100 TN).

In addition to the reconstruction of the existing track, Kokosing constructed two new crossovers in the infield of the keyhole area. These were field-designed and the location had to be changed numerous times to accommodate Mid-Ohio’s safety needs. The crossovers involved installing 12-inch storm pipe (1,400 linear feet), catch basins (3 EA), removing the existing infield (3,250 CY), installing 304 aggregate base (3,500 tons), and paving the new crossovers with asphalt (1,100 TN).

Because of the eight different pavement sections, the elevations of the existing curbs that lined the inside and outside of the turns needed to
be modified to match the new finished surface elevation. Consequently, the existing concrete curbs were removed and replaced (3,350 LF) with a consistent type of curb throughout the track. The curbs were slip formed with a special attachment to match Mid-Ohio's criteria. This work was added midway through the project and had to be accelerated and planned as not to interfere with the continuous track reconstruction.

As a result of the project team’s pre-planning, scheduling, double shifting of various crews throughout the eight different types of pavement sections, coordination of asphalt paving, plant, and terminal crews, Kokosing was able to complete the majority of the project by December 2005. Winter set in early and it became apparent that the weather was not going to cooperate to allow for warm enough temperatures to place the polymer asphalt intermediate and surface courses. The project was suspended for the winter and the wait for warm temperatures began.

Mid-Ohio's desire to be operational by April 1, 2006, was waging a battle with Mother Nature. Kokosing’s first goal and responsibility was to place a smooth and durable asphalt surface, even at the expense of delaying Mid-Ohio's opening. Fortunately, on March 30, 2006, a window of warm weather arrived and the polymer surface installation was able to begin and was completed on April 2, 2006, six days prior to the start of the racing season.

Innovation of Construction Techniques and Materials

Due to the design-build nature of this project, most of the techniques and materials used were innovative by necessity: cement stabilization for marginal sub-grade conditions; profiling of the track to maintain the track’s history; and designing, producing and placing a product that would exceed the customer’s expectation. All of these solutions were the brainchild of the project team, several engineers and a consulting firm who on a Sunday afternoon formulated ideas on scratch paper. This kind of “shirt-sleeve” management was prevalent throughout the project.

One of the main goals of this project was to produce a smooth surface that would withstand the extreme shear forces generated by the race cars and motorcycles. The project team researched and experimented with various types of mixes before deciding to use 442 Superpave, 9.5mm asphalt, utilizing special polymerized asphalt for both the leveling and surface courses.

Kokosing utilized wide paving practices (20 feet wide) in order to construct a single longitudinal joint on the 40-foot wide track. The joint was sealed with a specialized pavement joint adhesive to increase the performance and longevity of the longitudinal joint.

Recognizing that the density of the asphalt was the most important aspect of durability, Kokosing paid special attention to compaction. Three vibratory rollers, along with a three-wheel roller, were used to achieve mat compactions in excess of 94 percent and joint compactions exceeding 93 percent, which exceeded the owner's specifications.

The most visible and easily measured aspect of the finished product would be the smoothness of the asphalt surface. To achieve maximum smoothness for the cars and super bikes that reach speeds in excess of 200 mph, the use of a material transfer device was imperative. With the many super-elevated turns, elevation changes, and low-overhead clearance issues, the use of a traditional material transfer device was not an option. Consequently, the project team searched for and located a non-contact, low-profile material transfer device to accomplish this.
Sensitivity to the Environment

Prior to construction on the project, Kokosing installed several construction access points, utilizing aggregate to minimize tracking of dirt and other debris onto public roadways. Filter fabric fence was installed in the areas that were disturbed in construction of the crossovers and in areas where the storm pipe was installed. Kokosing Materials Inc.’s polymer asphalt terminal and hot-mix facility (Mansfield Plant-6), located in Mansfield, produced the project’s asphalt materials. Both of these facilities incorporate state-of-the-art environmental controls that exceed agency standards. The hot-mix facility was recently recognized by the National Asphalt Pavement Association for its environmental stewardship and received the agency’s Diamond Achievement Award.

Conclusion

Mid-Ohio was able to open the track for racing on April 8, 2006. On May 19, 2006, Mid-Ohio hosted the first spectator event of the year, the American LeMans Racing Series. The smooth asphalt surface, newly constructed crossovers, and concrete curbs received rave reviews from the racing teams. In regards to the resurfacing of the road course, six-time AMA Superbike champion Mat Mladin stated, “The surface is beautiful. I can’t complain about the surface at all. This is probably the best surface we go to anywhere as far as being smooth and having some decent grip.”

Mid-Ohio’s dedication to improving the safety and performance of the race track, and Kokosing’s commitment to meeting and exceeding their customer’s expectations, resulted in a finished product that will allow Mid-Ohio to continue their reputation as the most competitive road course in the country.

Wayne Brassell serves as a vice president and Amy Volz, P.E., serves as a project engineer with Kokosing Construction Co., Inc.
The Ohio Warm Mix Asphalt Open House and Field Trial, held Sept. 12, 2006, in Cambridge, drew 236 registrants representing six nations, 29 states and the District of Columbia. The conference was held to highlight the test of three warm mix asphalt technologies on an Ohio Department of Transportation (ODOT) project (No. 301-06, State Route 541) in Guernsey and Coshocton counties.

The conference opened with remarks from Federal Highway Administration Asphalt Pavement Engineer Matthew Corrigan and ODOT Assistant Director Cash Misel in regards to the importance of these emerging technologies.

Attendees heard presentations from five warm mix asphalt experts:

• Dr. Brian Prowell, assistant director of the National Center for Asphalt Technology, gave an overview of developing warm mix asphalt technology
• Dr. Everett Crews, technical manager of Asphalt Innovations, for the MeadWestvaco Corporation, described the Evotherm Warm Mix technology
• Barry McKeon, technical manager for the Hubbard Group, described the Asphamin technology
• **Larry L. Michael**, asphalt consultant, explained the Sasobit system for Sasol Wax Americas, Inc.
• **Dave Powers**, Asphalt Materials engineer for ODOT, gave an overview of the demonstration project and the testing of an evaluation process that is being employed.

Their presentations are available on the Flexible Pavements of Ohio website at www.flexiblepavements.org/conference_presentations.cfm.

During breaks, attendees had the opportunity to obtain additional information about the speakers’ presentations by visiting exhibits. In addition to Evotherm, Aspha-min and Sasobit, which were part of the Ohio Field Trial, two other systems were represented with exhibits: WAM Foam by Kolo Veidekke and Low Energy Asphalt (LEA) by Advanced Concepts Engineering.

Weather was not cooperating during the event, however, as a continuous downpour washed out the planned field trip to the warm mix asphalt paving site and asphalt plant. Instead, Wade Hamm and Ed Morrison of the Shelly & Sands, Inc., the project contractor, described their experiences with the warm mix asphalt technologies to the attendees and answered questions from the crowd in the dry confines of the conference room. Tim Dannemiller, design engineer for ODOT District 5, described the construction using photographs that he had taken on the project. Interestingly, the warm mix was being produced at the Shelly & Sands’ Mar-Zane Materials plant in Byesville, which is a NAPA ecological award winner and holds the Diamond Achievement Commendation.

Fred Frecker, executive director of Flexible Pavements of Ohio, closed the conference with an analysis of the cost differential of warm mix asphalt versus the conventional, control mix used on the project.
Results of a project evaluation, being conducted by ODOT and Ohio University, will be published as an ODOT research paper under project No.134123. See the ODOT research web page for details: www.dot.state.oh.us/divplan/research/research_sp&r.htm

The warm mix demonstration was preceded by a meeting of the Warm Mix Asphalt-Technical Working Group (WMA-TWG), co-chaired by FHWA and NAPA (photo below). The WMA-TWG’s mission is the evaluation and implementation of WMA technology in the U.S. – similar to what was done when SMA was introduced to this country. The TWG set the testing protocols for the field and mix testing and the plant and paver environmental testing. The purpose of the Ohio field trial was to field test those protocols, which will then be refined by the TWG and made available as others perform WMA technology trials. This way, data from the various trials and tests can be compared. One of the goals, in addition to evaluating the different technologies, is to develop a specification for agencies to use in contracting for WMA. And, also, to provide some preliminary information to help AASHTO draft NCHRP research projects on WMA. All previous meetings of the WMA-TWG had been in Washington D.C.

For more information on warm mix asphalt technologies see the article by Dr. David Newcomb that appeared in the Spring 2006 issue of Ohio Asphalt at www.flexiblepavements.org/ohio_mag.cfm and visit www.warmmixasphalt.org and www fhwa dot gov/pavement/asphalt/wma.cfm

Fred Frecker
A Perpetual Pavement road was built on the westbound lanes of the eight-mile-long (12.9 km) U.S. Route 30 Bypass around Wooster in Wayne County, known as the WAY30 Test Road. It opened to traffic in November 2005, and the first controlled vehicle tests were conducted in December 2005.

Perpetual pavement uses the Mechanistic-Empirical (ME) design principles to last indefinitely with the only required maintenance being occasional replacement of the thin-wearing course. The layers of a perpetual pavement structure consist of a wearing course, an intermediate course, and a fatigue-resistant course on top of an aggregate base and sub-grade. Perpetual pavement uses a mix that is highly resistant to rutting and thermal cracking; it is designed to be strong enough so that strains induced by traffic will not exceed a threshold value.

The WAY30 Test Road was designed as a demonstration project for the Ohio Department of Transportation (ODOT). ODOT's Office of Pavement Engineering led the committee that made recommendations on pavement thickness. The committee also drew members from Flexible Pavements of Ohio (FPO), Federal Highway Administration (FHWA), National Center for Asphalt Technology (NCAT), Heritage Research Group and several Ohio universities.

The Need to Validate Perpetual Pavement Design

To achieve the extended structural design life, the pavement design criterion was that the strain at the bottom of the pavement was to be limited to 70 microstrain. The perpetual pavement constructed on WAY30 consists of 16 inches (41 cm) of asphalt on a 6-inch (15 cm), dense-graded aggregate base and compacted sub-grade, as detailed in Figure 1. To validate the design approach, the research effort includes careful laboratory testing of specimens, field monitoring with condition surveys, and data collection from extensive seasonal and pavement response instrumentation installed during construction.

WAY30 Instrumentation and Monitoring

The research on WAY30 is being conducted by the Ohio Research Institute for Transportation and the Environment (ORITE) at Ohio University. The main objective of the research is to verify that the ME design of the perpetual pavement accurately predicts the actual field response and performance. To accomplish this, instrumentation has been installed at specific test points to monitor environmental and load response parameters according to the typical layout shown in Figure 1. Environmental monitoring includes measurement of temperature with thermistors and moisture with TDR probes of the base and sub-grade layers, and temperature within the pavement layer. In addition, an automatic weather station has been installed to gather climate data, including air temperature, precipitation (rain and snow), wind speed and direction, relative humidity and incoming solar radiation.

Load response data being collected include displacements, pressures, and strains (longitudinal and transversal) with Linear Variable Displacement Transducers (LVDTs), pressure cells, and strain gauges. Typical installation of strain gauges is shown in Figure 2. ODOT has also installed a Weigh-In-Motion (WIM) system that counts traffic and cumulative axle loads.

Specific road tests planned include controlled vehicle and Falling Weight Deflectometer (FWD) tests conducted at regular intervals after construction. The first set of tests was conducted in December 2005, with more tests following in July and August 2006. The summer tests...
are of special interest because they were conducted during hot weather when the asphalt experiences the greatest strain under load.

An additional research project being conducted by ORITE consists of the laboratory analysis of all materials used in the construction of the road. This includes samples mixed according to design specifications, samples collected during road construction, and samples collected from the road in service on an annual basis. Tests being performed on the asphaltic materials include:

- Resilient modulus
- Dynamic modulus
- Bulk modulus
- Static creep test
- Confined and unconfined compression tests
- Indirect tensile strength test and determination of absorbed energy value
- Flexural beam fatigue tests
- Moisture susceptibility test
- Thermal stress restrained specimen test

The aggregate base was tested for resilient modulus and permeability, while the sub-grade soil was also tested for resilient modulus.

Controlled Vehicle Test Results

During July 17-19, 2006, a series of controlled vehicle tests was conducted on the asphalt concrete sections of WAY30. The testing used two ODOT trucks – a single-axle truck loaded with 20.5 kips (91.2 kN) and a tandem-axle loaded with 34.5 kips (153.5 kN) – as well as the ODOT Falling Weight Deflectometer (FWD). The truck tests were conducted at speeds ranging from 5 mph (8 km/h) to 55 mph (88.5 km/h). Pavement temperature and soil moisture data were also collected. These tests were also repeated on Aug. 17, 2006, with the exception of the FWD runs.

Some test results from the afternoon of July 18 are presented here. The pavement surface temperature was about 120°F (49°C). Figure 3 shows the longitudinal strains in the fatigue layer from the single-axle truck at 25 mph (40.2 km/h). Figure 4 shows the fatigue layer longitudinal strains from the tandem axle truck, also at 25 mph (40.2 km/h). It is clear from figures 3 and 4 that the maximum
strain in the fatigue layer is below the design value of 70 microstrain despite the severe climatic conditions and the slow speed.

ORITE also hosted the second International Conference on Perpetual Pavement at the Hilton Columbus at Easton in Columbus, Sept. 13-15, 2006. More than 150 experts on perpetual pavement from 13 foreign countries ranging from Canada to Kazakhstan and from 33 states, including representatives from 19 state departments of transportation (DOT), discussed optimal design and construction approaches for asphalt pavements that have an indefinite lifespan with minimal maintenance.

Opening remarks were provided by Dr. Roderick J. McDavis, president of Ohio University, King W. Gee, associate administrator for FHWA Infrastructure, and Gordon Proctor, ODOT director.

Harold Linnenkohl, commissioner of the Georgia Department of Transportation and president of the American Association of State Highway and Transportation Officials, presented the 2005 Asphalt Pavement Alliance (APA) Perpetual Pavement Awards at a luncheon on September 14, sponsored by the Asphalt Pavement Alliance. Closing remarks were given by NCAT Director Dr. E. Ray Brown. More than 20 technical presentations were delivered, and two panel discussions were held where state DOT officials from Ohio, New York, Texas, and Kansas shared their experiences developing perpetual pavements, and where transportation professionals discussed the lifecycle cost savings of perpetual pavements.

The conference was co-sponsored by the FHWA, the Ohio, New York and Texas DOTS, APA, NCAT, the Asphalt Institute, the National Asphalt Pavement Association, State Asphalt Pavement Associations and the Central Ohio Section of the American Society for Civil Engineers.
Recycled Asphalt Pavement Now Permitted in Smoothseal

Smoothseal, the Ohio Department of Transportation’s (ODOT) fine-graded polymer-modified asphalt, has just gotten more economical.

Recently, ODOT’s Specification Committee revised Item 424 of its Construction and Materials Specifications (C&MS), which permits the use of recycled asphalt pavement (RAP) in Smoothseal, thereby stretching valuable dollars.

Smoothseal, ODOT item 424, comes in either Type A or B, both graded for thin lift application.

ODOT’s specification change will allow contractors to use 10 percent recycled asphalt pavement in Smoothseal mixes. RAP used in this mix will be held to the same stringent standards as virgin aggregate, thereby ensuring the same high-quality performance that is typical of Smoothseal. This is accomplished by requiring the recycled asphalt pavement to be from state highway or turnpike projects and RAP material used in surface courses must be processed to a maximum size of 3/4 inch before incorporation into the mix. The requirements for RAP used in Smoothseal mixes goes even further to ensure good skid resistance.

A significant feature of Smoothseal is its skid resistance. Data from ODOT skid testing indicates a range of values from 43.1 to 58.2 (see the Fall 2005 issue of Ohio Asphalt). The recent specification change preserves the skid resistance feature of Smoothseal by requiring the silicon dioxide content of the total natural sand blend (which includes the RAP aggregate) to be at least 50 percent. It is this silicon dioxide requirement that enhances the skid resistance of these mixtures.

ODOT has some experience with RAP use in Smoothseal, albeit very limited. An experimental section of RAP-modified Smoothseal was placed on Interstate 75 near Bowling Green in 2003. This was done as part of project 340(2002) which called for a 1-inch-thick lift of Smoothseal, Type B. District 2 is monitoring the performance of this material and indicates performance to date is the same as virgin mix.

Recent increases in binder cost have provided needed impetus for optimizing mixtures — and Smoothseal is no exception. According to ODOT’s September placing index, binder grade PG76-22M (the grade used in Smoothseal) is costing $503 per liquid ton. At this cost, RAP having 5.5 percent binder content will return $2.77 per ton of mix when incorporating at a 10 percent rate. With the cost of Smoothseal mix being near $140 per cubic yard, a 10 percent RAP represents a cost savings of approximately 4 percent in binder cost alone. A total of about 5 percent can be saved when one also considers the savings in aggregate.

Smoothseal pavements continue to prove effective in pavement preservation, enhancing pavement smoothness and skid resistance. Now, with the allowance of recycled asphalt pavement, Smoothseal will be even more economical. For more information about Smoothseal visit the Flexible Pavements of Ohio website (www.flexiblepavements.org), where you will find technical information to assist you in determining candidate pavements and construction guidance.
In this day of needing more and more skilled people in the workforce, isn’t it nice to know that Flexible Pavements of Ohio (FPO) is here? While there is still much need for heavy construction workers and civil engineers – especially ones that are asphalt savvy – 2006 marks the 10th year that FPO has been helping fill that void with its Ohio Asphalt Scholarship Fund.

With 26 students being awarded a total of $26,000 in scholarships for the 2006-07 academic year, FPO has now assisted nearly 200 Ohio college students since 1996.

The scholarship program originated at a time when none of Ohio’s 10 universities that offered civil engineering degrees provided course work in hot mix asphalt. Today, besides honoring some of the state’s top civil engineering students, FPO’s Ohio Asphalt Scholarship Fund has fostered the study of HMA into the curriculums at Bowling Green State University, Ohio University of Toledo and Youngstown State University. This commitment by schools to include HMA into their coursework is providing valuable knowledge to newly graduated civil engineering and construction management majors from Ohio colleges and universities.

Whether students ultimately work for the HMA industry, highway agencies, or consultants, this program promotes an increased understanding of practical matters of specification interpretation, production, and product quality. A higher level of knowledge throughout the field increases efficiency and promotes better communication between all parties involved in the construction of high-quality HMA.

FPO would like to salute the 2006 scholarship recipients and their schools, as well as express its gratitude to the association members who made this program possible through their generosity.

Scholarship winners were announced at this spring’s FPO Annual Meeting and checks were distributed this fall for the current academic year.
The 2006-07 recipients and the member companies sponsoring the $1,000 Ohio Asphalt Scholarship are:

- Barrett Paving Materials, Inc.
 - George Minges
 - Dan Sawhook
 - Anthony Eckinger
 - Anthony Turowski

- Erie Blacktop, Inc.
 - Jason Ross
 - Naomi Schmidt
 - Steve Bell
 - Justina Deurer

- Flexible Pavements of Ohio
 - Matthew Foreman
 - Benjamin Halada
 - Craig Litmer
 - Tristan Tate

- Gerkin Paving, Inc.
 - Lucas DeGarmo
 - Jeremy Schroeder
 - Michael Ford
 - Nicholas Wilkerson

- The Burgett Family/Kokosing Construction Co., Inc.
 - Ohio U
 - Ohio State
 - U of Cincinnati
 - U of Akron

- John R. Jurgensen Co. / Valley Asphalt Corp.
 - Ohio Northern
 - U of Toledo
 - U of Cincinnati
 - U of Toledo
Along with the aforementioned company sponsors of Ohio Asphalt Scholarships, there were other individuals and companies that contributed to the scholarship fund: Bowers Asphalt & Paving, Inc.; Columbus Bituminous; Columbus Equipment Co.; Cunningham Asphalt Paving, Inc.; Bill Fair, Fred & Teresa Frecker; General Insurance Co.; Hardrives Paving Construction, Inc.; Hy-Grade; The Koski Construction Co.; M&B Asphalt Co., Inc.; The McLean Co.; Meeker Equipment Co., Inc.; Northeastern Road Improvement; Northern Ohio Paving; Osterland; S.E. Johnson Companies, Inc.; Schloss Paving; H.P. Streicher, Inc.; Thomas Asphalt; Valley Paving Co.

FPO would like to thank all individuals and companies that contributed to the 2006-07 Ohio Asphalt Scholarship Fund.
Disgruntled Bidder Cannot Recover Lost Profits Against Municipality

Traditionally most experienced construction law practitioners in Ohio have believed that injunctive relief was the only remedy available to unhappy bidders who believe the statutory process has not been properly followed. However, a Court of Appeals in the Cementech case ruled that the rejected bidder could recover lost profits believing that only this extreme remedy would deter government’s violation of competitive bidding laws.

On June 28, 2006, the Ohio Supreme Court reversed this decision and found that “a rejected bidder is limited to injunctive relief.” Cementech v. Fairlawn (109 Ohio St.3d 475). The Supreme Court reasoned that to award damages “punishes the very persons competitive bidding is intended to protect — the taxpayers.” It stated that injunctive relief and “the resulting delays” were a sufficient deterrent to government’s violation of competitive bidding laws.

By Donald W. Gregory, Esq.
Kegler, Brown, Hill & Ritter
65 E. State St., Suite 1800
Columbus, OH 43215
614.462.5400

Flexible Pavements of Ohio is seeking to fill the position of Pavements and Materials Engineer. The Pavements and Materials Engineer provides FPO members with technical assistance; represents the interests of the industry before ODOT, OEPA, and various other federal, state and local government agencies; assists pavement owners in the development of HMA specifications and facilitates the development of new materials and specifications; facilitates member involvement in FPO through communication of issues between the membership and agencies regarding paving materials, techniques and specifications, environmental regulations, etc.; represents the interests of the membership on affiliated industry committees and associations, such as OTEC, ASHE, ASCE, etc.; develops training curriculum and instruction; and assists in the development of technical and/or promotional publications. Among other qualifications, applicants must be an engineer registered in the State of Ohio.

It is intended that this person will be on-board on or before March 31, 2007. Interested persons can send their resume to: Clifford Ursich, PE and reference Pavement and Materials Engineer position.

Flexible Pavements of Ohio
PO. Box 16186
Columbus, Ohio, 43216
Electronic submissions can be made to: cliffursich@flexiblepavements.org.

Information received will be treated in a confidential manner.

Educational Opportunities

Mark your calendars for upcoming educational opportunities:

Feb. 7, 2007 – The Ohio Asphalt Paving Conference: Held at The Ohio State University’s Fawcett Center, this is the “must attend” one-day conference for public agency and industry personnel.

Feb. 12-16, 2007 – Comprehensive Asphalt Mix Design and Level 3 Exam: Columbus

Feb. 14, 2007 – Field Quality Control Supervisor Training: Columbus (this is the rescheduled date)

March 20-21, 2007 – The FPO 45th Annual Meeting and Equipment Exhibition: The two-day conference returns to the Hilton Columbus Hotel at Easton.

March 26-27, 2007 – Asphalt Pavement Construction Workshop: The event will be hosted by Jim Scherocman in Sharonville.

April 12-13, 2007 – Asphalt Pavement Construction Workshop: The event will be hosted by Jim Scherocman in Mason.

For further information on these events and others, and for on-line registration, visit www.flexiblepavements.org/events.cfm.

If you are a FPO member and have news about your business or company regarding in-state staff changes or honors, and would like it to appear in Ohio Asphalt magazine, you can send the information by fax, at 614-846-8763; e-mail, at editorial@triad-inc.com; or call 800-288-7423.
I was so easy. When I specified polymer modified asphalt all I had to do was to change the asphalt cement from PG64-22 to PG70-22M using ODOT 702 specifications. Contractors knew what to do. Now I have longer lasting pavements which require less maintenance.”
RAP fines can have up to twice as much AC content as 1/2 x 1/4 and more than four times as much as 3/4 x 1/2. So, feeding RAP out of one bin makes it virtually impossible to hold spec, especially with Superpave. Now with an Astec Fold n’ Go mobile screening plant, you can consistently fractionate RAP at high tonnages the same as you do your virgin aggregate.

If you run more than one HMA plant, the Fold n’ Go is quickly and easily moved to handle RAP fractionating at each plant. This heavy-duty mobile screen plant is totally self-contained with three on-board stacking conveyors and sets up in just 15 minutes. RAP replaces expensive virgin ingredients pound for pound and without loss of mix quality. Start realizing serious material savings with your investment in a Fold n’ Go mobile screening plant and call Cantwell Machinery Co.
Is Your Machine Ready For Next Season?

Paver Saver Program from Ohio CAT.
Take advantage of cost savings on asphalt paver parts and rebuilds during the winter months.

- Discounted wear parts for rebuilds
- Free inspection from your Ohio CAT Product Support Sales Representative (PSSR) or Paving Product Specialist
- Program begins December 1, 2006
- More details available soon

Please contact Paving Specialists Bob Toney (Columbus) or Chuck Lappert (Cleveland) or your PSSR to schedule your free inspection today!

<table>
<thead>
<tr>
<th>Location</th>
<th>Phone Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cadiz</td>
<td>800.837.6204</td>
</tr>
<tr>
<td>Canton</td>
<td>800.837.6207</td>
</tr>
<tr>
<td>Cincinnati</td>
<td>888.332.4658</td>
</tr>
<tr>
<td>Cleveland</td>
<td>800.837.6200</td>
</tr>
<tr>
<td>Columbus</td>
<td>888.441.4658</td>
</tr>
<tr>
<td>Lucasville</td>
<td>888.336.4658</td>
</tr>
<tr>
<td>Painesville</td>
<td>888.901.6620</td>
</tr>
<tr>
<td>Richwood, KY</td>
<td>888.446.4658</td>
</tr>
<tr>
<td>Toledo</td>
<td>888.339.4658</td>
</tr>
<tr>
<td>Troy</td>
<td>888.330.4658</td>
</tr>
<tr>
<td>Zanesville</td>
<td>800.837.6205</td>
</tr>
</tbody>
</table>

www.OhioCAT.com
We Go The Extra Mile Every Time

Reliable Equipment. Responsive Service.

When you need a partner you can trust, Columbus Equipment Company is here. For over 50 years, we have consistently provided fair deals, reliable equipment and top quality customer service.

In a recent blind survey, Columbus Equipment Company was ranked the number one dealer most likely to stand behind their equipment and have the quickest service response time.

Experience The Difference For Yourself.

Columbus
(614) 443-6541

Toledo
(419) 872-7101

Cincinnati
(513) 771-3922

Richfield
(330) 659-6681

Cadm
(740) 942-8871

Dayton
(937) 237-0063

Cambridge
(740) 435-9529

Canton
(330) 453-4521

Jackson
(740) 288-0222