Porous Asphalt Pavements

Kent Hansen
Director of Engineering
National Asphalt Pavement Association
Resources

Tom Cahill
Cahill Associates Environment Consultants

Newt Jackson
Nichols Consulting Engineers

Larry Scofield
Arizona DOT
What are Porous Pavements?

Open-Graded HMA ~ 2 ½”
½” Agg. (#57) ~ 1 – 2” Thick
Clean Uniformly Graded 2”-3” Crushed Agg. (#2) – 40% Voids
Non-Woven Geotextile
Uncompacted Subgrade
Rainfall 45"/yr

Evaporative loss from impervious surfaces 2"

Reduced infiltration through regraded and compacted soils in grasses

0" of infiltration under impervious surfaces

Reduction in base flow by 15"/yr under impervious surfaces

43" runoff from impervious cover
Comparison of Detention vs. Infiltration Design Systems

![Graph comparing discharge rates over time for Predevelopment, Post Development, Post Development with Detention, and Post Development with Recharge](image-url)
Porous bituminous pavement

- Developed by the Franklin Institute – 1972
- Tested in pilot projects during 1970’s
- Development of geotextiles in 1979
- Current design since 1980
- CA has built over 150 projects since 1980
- Outstanding engineering project - 2000
Keys to Success – Site Conditions

- Soil permeability/infiltration rate
 - EPA recommends 0.5”/hour
 - 0.1”/hour still OK
- Depth to bedrock > 2’
- Depth to high water > 3’
- Fill – not recommended
- Frost
 - Pavement section should exceed frost depth
Soils Investigation

- Borings and/or test pits
 - Test permeability
 - Determine depth to high water table
 - Determine depth to bedrock
Keys to Success - Design

- Slope – limit surface slope to 5%
 - Terrace when necessary
 - Use conventional HMA for steeper slopes
- Avoid piping water long distances
- Spread infiltration over largest area possible
 - 5:1 Impervious: Infiltration
Avoid piping long distances
Bottom Must Be Flat
Design

Regulations

- Rainfall
 - Typical designs for 6 month/24 hr storm
 - Conservative design for 20 year/24 hr storm range from 1.4 to 15 in./24 hr.

- Meet Local & State wastewater mitigation requirements.
Keys to Success – Design

Usage / Vehicle Loading

Lightly loaded areas

- Parking lots
- Low volume roads (limited truck use)
- Recreational Areas

- Meet structural requirements
- Roads?
What about roads?
It does rain in Arizona
18 Years Later
Roads

- Challenges
 - Cuts and fills
 - Slope
 - Variable soil conditions
 - Utilities
- Limited use
Keys to Success – Construction

- Build porous pavement last
 - Protect from construction debris
 - Protect from soil laden runoff
- Protect site from heavy equipment
 - Don’t compact subgrade
- Excavate to subgrade (soft footprint)
- Place filter fabric
Keys to Success – Construction

- Place reservoir course 1.5 to 3 in. stone (if gravel source then 95% double fracture)

- Place 1-2 in layer of ½ in stone to stabilize the surface of the reservoir course

- Place porous asphalt course (2 to 4 in.) usually compacted / seated with 2-3 passes with 10 ton roller.
Porous HMA Surface
Open-Graded HMA

- Binder Content 6.0-6.5%
- Should consider using stiffer asphalt
- Consider modified asphalt
- Consider fibers
- Thick OG HMA – 2 layers?
Construction Guidelines

Construction

- Restrict traffic for 24 hrs.
- Protect porous pavement from contamination.
 - Runoff sediment
 - Construction debris
Construction Guidelines

- **Post Construction**
 - Inspect for design compliance during storm event.
 - Confirm vegetation is established before removing temporary storm water measures.
 - Do not sand or ash for snow or ice, liquid de-icing compounds may be used.
 - Sign for maintenance.
Maintenance

- Inspect several times first few months during storm events.
- Inspect annually thereafter.
- Pavement surface may be flushed or jet washed.
- Damage pavement can be repaired using dense hot mix provided <10% area.
Cost

- Cost of pavement structure more
- May be offset by reducing drainage structure costs
Keys to Success

- Make sure site conditions are acceptable
 - Permeability
 - Depth to groundwater and/or bedrock
- Design
 - Bottom of infiltration bed level
 - Limit surface slope < 5%
 - Runoff from adjacent areas will not plug pavement
Keys to success

- **Construction**
 - Don’t compact subgrade
 - Protect pavement from contamination
 - Build porous pavement late
 - Stabilize adjacent areas before construction

- **Maintenance**
 - Do not sand, or ash pavements
 - Install signage to warn maintenance personnel
 - Can patch with conventional asphalt < 10%
Morris Arboretum
Philadelphia, PA
1984
Diagram of infiltration bed at Morris Arboretum
Shared Medical Systems
Malvern, PA
1982
Conclusions

- Porous pavements offer good alternative to conventional stormwater mitigation
- Site Conditions must be right
- Need to protect pavement from contamination during and after construction
- Properly designed and constructed will last more than 20 years